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THE EFFECT OF TWO-DIMENSIONAL TOPOGRAPHY 
ON SUPERFICIAL THERMAL GRADIENTS

By AETHUE H. LACHENBRUCH

ABSTRACT

The Jeffreys-Bullard theory of the topographic disturbance to geothermal 
gradients is only approximate because it neglects the effects of lateral heat loss 
through sloping surfaces. It cannot be applied with confidence where the height 
of the relief features is large relative to their horizontal distance from the station 
and to the depth of the measurement points. Such conditions arise in the near- 
surface geothermal measurements made in the ocean bottom if bold relief occurs 
on a scale exceeding a few meters, or on the continents in observations in shallow 
boreholes in rugged terrain.

In an important special case, the measurement depth is small relative to the 
distance to the relief, and the gradient anomaly can be approximated by the 
value applicable at zero depth. To investigate this case, an exact solution was 
obtained for the steady heat flux through an inclined plane of arbitrary height 
and slope angle. These two parameters are easily visualized and represented 
graphically so that models which approximate or bracket real topography can 
often be identified quickly. The effects of slopes of fairly general (two-dimensional) 
form can be approximated by identifying them with their equivalent plane 
slopes the plane slopes which yield the same Jeffreys approximation at the 
station. The results can be applied to stations on planes, valleys, ridges, or benches 
bounded by irregular slopes. They are valid at points arbitrarily close to slopes 
of any height or inclination. Finite slope and curvature of the surface at the 
station can be accommodated if they are not too great. Although direct appli 
cation of the theory is limited to cases in which the measurement depth is less 
than the horizontal distance to the relief, useful limits can be obtained for other 
cases. Even where other theories of the topographic correction are applicable, 
the present method can be useful as it leads to rapid estimates by graphical 
means.

In oceanic heat-flow measurements, the uncertainty in the topographic anomaly 
is less than 10 percent only if the probe length is at least 2 or 3 times the uncer 
tainty in local elevation differences, and the curvature of the temperature profile 
is negligible. Over an irregular ocean bottom, relief not detectable by modern 
echo-sounding techniques could cause errors of 50-100 percent in gradient 
measurements to depths of a few meters. Such errors will often, but not always, 
be accompanied by marked curvature in the temperature profile. Heat-flow 
anomalies of several hundred percent, such as some reported from oceanic ridges, 
cannot be attributed to undetected relief. The steady-state topographic anomaly 
in the center of a deep narrow oceanic trench can be on the order of 25 percent.

El
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The theory may be applied also to topographic corrections in lakes and bore 
holes on the continents, and to the case of thermal refraction across a sloping 
bedrock surface buried in alluvium.

INTRODUCTION

Topographic relief causes local irregularities in near-surface geo- 
thermal gradients and they must be identified before regionally 
meaningful values of geothermal flux can be obtained. A steady-state 
theory of the topographic correction was presented by Jeffreys (1938) 
and elaborated by Bullard (1938). A comprehensive discussion by 
Birch (1950) extended the theory to account for topographic evolu 
tion. The fundamental simplification in these corrections results from 
replacing the irregular surface by a reference plane upon which the 
temperature varies in proportion to the relative elevation of the 
actual surface. There is no limit to the fidelity with which the topo 
graphic surface can be represented, as the representation is achieved 
by a numerical procedure. The mathematical approximation of 
Jeffreys was verified by Birch (1950) for subsurface points by com 
parison with exact solutions for simple topographic models obtained 
by superimposing a uniform field and the fields of continuous point 
or line doublets (Lees, 1910).

In an alternative approach, Jaeger and Sass (1963) approximated 
the topography with Lees' line-doublet model and calculated the 
subsurface temperature corrections directly (Jaeger, 1965, p. 10). 
The Lees' model gives results for symmetrical ridges or valleys 
(depending on the polarity of the doublet) with geometric parameters 
determined by the distance of the doublet above the surface and the 
relative strengths of the doublet and uniform field. Integrating the 
doublet solution over a half plane, Jaeger and Sass obtained the 
solution for a monocline, that is, a family of monotone sloping surfaces 
asymptotic to horizontal planes at different elevations. Other exact 
solutions for special topographic forms have been given by Castoldi 
(1952) and in various works discussed by Birch (1950).

Thus, in the two classical approaches to the geothermal terrain 
correction, one approach considers the approximate effects of an 
(effectively) exact representation of topography, and the other, the 
exact effects of an approximate representation of topography. As 
Birch (1950) has shown, the first method is more general, and it 
lends itself readily to refinements accounting for topographic evolu 
tion. It has been pointed out by Jaeger and Sass (1963) that the 
second method is useful for very rapid estimates of terrain effects 
where detailed corrections are not warranted because of imperfectly 
known topography or other uncertain sources of disturbance. This 
last statement depends upon the geometric model being sufficiently
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simple that it can be easily identified with the topographic surface to 
be approximated. Both methods generally become less satisfactory as 
the gradient measurement to be corrected approaches the surface. 
This can be explained as follows: In general the frequency of occur 
rence of features of the earth's topographic relief decreases as the 
size of the feature increases; the largest and most infrequent features 
have a vertical scale on the order of a few kilometers. However, the 
effect of topographic features on the geothermal gradient is not large 
as long as their height is (1) less than the horizontal distance to the 
measurement point, or (2) less than the depth of measurement. Thus, 
for measurements a few kilometers beneath the surface, condition 2 
is satisfied even for the most rugged relief (at any horizontal distance), 
and only a gross representation of the topography, used with any 
reasonable approximation scheme will generally suffice. As the meas 
urement points approach the surface, progressively smaller (and more 
frequently occurring) features will fail to satisfy condition 2, and 
those that are not far enough from the station to satisfy condition 1 
will have to be accounted for with progressively increasing rigor; 
although the effects of distant relief do not diminish, the effects of 
close-in relief increase greatly, and small-scale irregularities can cause 
sizable anomalies. Under these conditions the second method becomes 
less satisfactory because it becomes increasingly difficult to represent 
close-in relief in detail and still account for distant relief in a gross 
way with a simple geometric model. The first method becomes un 
certain for near-surface measurements because it neglects second- 
order effects of lateral variations of the vertical gradient in the relief. 
These effects can become appreciable when close-in relief must be 
considered. Birch (1950, p. 625) pointed out that, "at shallow depths, 
under sharp irregularities, the approximation is sure to be poor." 
For this report it is necessary to define "shallow" or "near-surface" 
gradient measurements. For this purpose the term "superficial 
gradient" will be used to refer to a gradient in which the topographic 
anomaly is approximated well by the value applicable at the surface
(2=0).

Almost 90 percent of the determinations to date of earth heat 
flow were computed from measurements of gradient made within 
a few meters of the surface of the solid earth (Lee and Uyeda, 1965). 
They were made beneath the world's oceans and seas where effects 
of topographic relief are surely unimportant over much, but not all, 
of the bottom. Generally these measurements are not corrected for 
topographic effects because continuous precision depth soundings and 
bottom photographs indicate that there is no nearby relief with a 
scale exceeding a few meters, because the bottom topography is not 
adequately known, or because there is no readily available simple
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method of estimating the effects. In most determinations (Bullard 
and others, 1956) it will be found that the bottom topography is 
not known well enough to permit detailed corrections. Investigation 
of the problem is necessary to ascertain what must be known of the 
topography near a superficial gradient measurement in order that it 
might be reduced to a regionally meaningful quantity. This problem 
is considered for the two-dimensional case in the present paper. In 
return for the loss of generality imposed by the two-dimensional 
model, we gain an intuitive simplicity that makes the results easy to 
visualize and apply. The effects of many real topographic surfaces 
can be approximated or bracketed by the two-dimensional model.

An additional limitation of the present treatment is that most of 
the results apply only to the limiting value of the topographic anomaly 
as the depth approaches zero; that is, they apply to superficial gradi 
ent measurements. Although the superficial case includes many 
important trouble spots for the Jeffreys approximation, it does not 
include them all.

The plan of this paper is as follows:
Exact expressions are derived for the anomaly in the vertical surface 

flux caused by a plane slope, defined as an inclined plane segment 
joining two horizontal halfplanes of different elevation. 

The corresponding analytical result for the plane slope that follows
from Jeffreys' reference-plane assumption is given. 

The two results are compared.
Upper and lower limits are given for the heat flow where two plane

slopes coexist to form a plane valley, plane ridge, or plane bench.
A simple procedure is described for bracketing the anomaly due to a

general slope by exact results for plane slopes.
The first and second methods for terrain corrections (described pre 

viously in introduction) are combined to obtain a method for 
approximating and bracketing the effects of a general slope, 

Conditions for neglecting gentle slopes at the station are derived. 
Variation of the topographic anomaly with depth is discussed, and 

conditions under which a gradient anomaly may be considered 
superficial are presented.

Transient effects are considered and an additional application, in 
volving the heat-flow anomaly caused by a buried bedrock 
pediment, is given for previously obtained results.
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HEAT FLOW THROUGH A PLANE SLOPE: 
EXACT SOLUTION

An expression is needed for the vertical thermal flux through a plane 
slope on the earth's surface. The earth is assumed to be homogeneous 
and isotropic, and the surface is represented by a plane segment in 
clined at an angle /3 to horizontal surfaces beyond the toe and behind 
the brink which are at an elevation difference H. The model is illus 
trated by the region below the contour JT' (A1 ,B',6',D',Er) in the 
77-plane, figure 1. The slope angle /3 is represented by IT In. To 
represent otherwise uniform conditions, it is assumed that the surface 
(F') is at zero temperature, and that at large distances from the slope 
the temperature is proportional to distance beneath the surface. 
Therefore, hi the ^-plane we want to find

50

Subject to

0=0, (x, z) on r'

(1)

(2)

w -plane 

E D C B A
+ 1 0 -1

FIGURE 1. Transformation of the plane boundary of a half space into a plane
slope.
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j: >0, a constant, |x|, g->« (3)

The special case of the vertical cliff (w=2) has been discussed by 
Castoldi (1952). His solution was obtained by mapping a uniform field 
in the co-plane into the region bounded by a step-shaped contour of the 
ij-plane with the conformal transformation

dr)_ . /faj-j~l\K 
du \w   I/

The more general function (Kober, 1962, p. 161),

do)

/ [ -I v n

=A ( - - } where n is a positive integer, (4) 
\co  I/

achieves the mapping illustrated in figure 1. It follows, from the 
properties of conformal transformations, that this function maps the 
uniform field

0*(w)=-yy, 7 a constant, v>Q,

into the function Q(rj) which satisfies conditions 1 and 2. It also 
satisfies condition 3 if

y=GA. (5)

Inasmuch as the ratio of normal derivatives on corresponding con 
tours is the reciprocal of the magnitude of the derivative of the trans 
formation, we have from 4 and 5

. ^t I/ 

We shall adopt the notation

u+l

(6)

(8)
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Hence
=-, 

r/ p

ITcos- 
n

(9a) 

(9b)

The expression on the left is the quantity sought. It is the ratio of 
the vertical heat flow through any part of the surface T' to the regional 
heat flow. It is expressed in terms of p which is known in terms of u, and 
we should like to have it in terms of x=R(^), To get z as a function of 
u we integrate equation 4 on the boundary r. Thus:

do)

which yields for n an even integer (Grobner and Hofreiter, 1949, 
table 16, formula 12b):

»U+,j>!«]
7T 1 X 1 ^I Lxn-iJ

Tcos    In
n

o   , , 2 sin    tan -1
n

n

n

2  >
l-Xn

_..~ . 2i>7T 2Xra sin   
n JJ

TT f aj . 2w « l- -Z)sin - 
Z \_  =! n

 2(1  «)

where
e=0, 71/2 even, 
= l,n/2 odd, 

and X is defined by equation 7.
This result includes the value of the constant in equation 10

(U)
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which is obtained from the condition:

n=H(i cot- ) when u=   l, i.e., when X=0. 
V n/

Equation 11 maps the boundary T into F'.

HEAT FLOW BEHIND THE BRINK AND IN FRONT OF THE TOE

The horizontal parts of F' to the left and right of the sloping part
are represented respectively by u<^ 1 and u^>-{-\. Over both these

i_
ranges X is positive and hence \n is real and equal to p. The only imagi 
nary quantity that appears in 11 for H>1 is the iH generated by the 
second term for u<^   1 as required by the mapping.

Thus the z-coordinate of a point on the horizontal portion of the 

surface F' at which the normalized heat flow is - is given by:

+
42

, In 
n

IV

. , - (-1

a n 2vir . , p's 2p cos    f- 1
 2 sin   tan" 

n

2-1 
2^

^^S

where

. 2vir

«=o,3

(12)

i n jj =1, odd.

Equation 12 is valid only for n=even integer. The corresponding 
general expression for n odd is not needed, as only the case n=3 
(that is j8=60°) gives useful additional information. The result 
corresponding to equation 12, but valid for n=3, is (Grobner and 
Hofreiter, 1949, table 16, formula 12b)
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=3. (13)

In equations 12 and 13 the normalized surface heat flow, p~*, ranges 
between 0 and °° with extremes occurring at the brink and toe of the 
slope respectively. Values less than unity occur behind the brink and 
greater than unity in front of the toe as might be expected.

HEAT FLOW ON THE SLOPING SURFACE

The part of T defined by H<1 maps into the sloping part of JT'. 
In this region

_
and \n is not real in general and hence is not equal to p. To reduce 
11 to an expression corresponding to 12 but valid on the sloping 
surface, we set

and hence
I -(1+2*)

\n=pen ,±fc=0, 1, 2, 3, * * ,n-l.

As k=   l satisfies the conditions of the transformation, we use

hi equation 1 1 and extract the real part to obtain the relation between 
p and x on the slope.

TT , H \  np TT . 1 ,  *   ,**. cos-+-ln 
pnjr\ n 2

. , +2 S cos ^r ln

2r , »/ 2^7rV"l 2 , f^   » 2»or , 2 ^l s    4^)2 (cos   j + 4 sin -cos   p(p   1)

2>44-l-f-2#2 cos  +4p2 (cos-^j   4 cos -cos  p(j?+l)
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7T .4 cos-sin p(p2 1)
~'    i 1 fL ffkisin   tan" 1       -  -        2

"=1 «4+l  2»2 cos  4»2 ( sin )
r * n ^ \ n /

W-2 

7T ^-, . 2V7T . ,, N , , iuf XI,,--Xisin  h(l «)tan"1 ^    ̂  k <l,rteven. (14)
^ i/=l W _, 7T '2p cos - 

where:

= 0, Pl<P<P2

and
2ir / 2^7r\2PI, pi are roots of p4+1 2p2 cos   4p2 ( sin   ) =0.n \ n /

Numerical results from equations 12, 13, and 14 are presented in 
terms of the following notation, which is more convenient for the 
discussion :

G=Q/K, where Q is the regional heat flux,
and K is the thermal conductivity.

p~l , H>1 X ^^?^ normalized vertical heat flux at 
~ ~^' surface (r').

distance behind brink (that is, to the 
YT=S, left from D', fig. 1) in units of 

slope height.

1 distance beyond toe (that is, to the 
jj[ x  Hcot0] r, right from B', fig. 1) in units of

slope height.

_x horizontal distance from brink (that 
w, is, to the right from D', fig. 1) in

units of slope width.

s, r, and w will always be used as positive quantities, and w will 
never exceed 1. Thus stations on the lower horizontal half plane will 
be designated by a value of the coordinate r, those on the upper half 
plane will be designated by a value of s, and those on the slope by a 
value of w. When a station lies on the lower half plane, that is, beyond 
the toe, the relief will be referred to as positive, and when it lies 
on the upper half plane (behind the brink), the relief will be called 
negative. Where it is not convenient to indicate the sign of the relief
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by explicit reference to the coordinates r and s, slopes below the station 
will be designated by a negative value of /3 and those above it by a 
positive value of /3.

The general form of the normalized surface heat flow q(x) is best 
seen from figure 2, where the abscissa is in units of slope width.

Q i.o

FIGURE 2. Vertical component of normalized heat flow through a plane slope. 
Solid curves represent exact results, dashed curves represent the Jeffreys 
approximation.

However, when dealing with effects beyond the toe or behind the 
brink, it is usually more convenient to consider distances in units 
of slope height. This is done in figure 3, which shows the decay of 
the topographic anomaly as a function of r and s for selected slope 
angles. The results 12, 13, and 14 are easily extended to other slope 
angles with graphs using /3 as the ordinate (fig. 4 and pi. 1). Tabular 
results from equations 12 and 13 are presented in tables 1 and 2, 
and results from equation 14 are given in table 3 (p. E12-E14).

298-334'
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FIGURE 3. Decay of the heat-flow anomaly with distance beyond the toe 
(r, upper curves) and behind the brink (s, lower curves) for selected 
slope angles (/8).
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

FIGURE 4. Vertical component of heat flow through the sloping part of a plane 
slope, w is horizontal distance from the brink in units of slope width.

HEAT FLOW THROUGH A PLANE SLOPE: 
APPROXIMATE SOLUTION

It will be useful to obtain an approximate solution to the problem 
solved exactly in the previous section. For this purpose we shall use 
the simplification of Jeffreys (1938), Bullard (1938), and Birch (1950), 
in which the irregular topographic surface is replaced by a plane 
reference surface whose temperature varies locally in proportion to 
the topographic relief.

To evaluate the topographic disturbance to temperature by this 
model at a point whose horizontal coordinate is x0, and depth be 
neath the real surface is z, we pass the reference plane through (xfl , 0) 
and assign to it the temperature:

(15)

where G is the regional thermal gradient and h(x) is the elevation of 
the topographic surface relative to the reference plane. (For simplic-
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ity, the topographic surface is considered isothermal in this part of 
the discussion.) By treating the vertical gradient as uniform in the 
topographic irregularities, the approximation neglects the effects of 
heat escaping horizontally through the sloping surfaces.

The temperature disturbance, A9, is given by a well-known result 
from potential theory (for example, Birch, 1950, eq 13) :

T(x)-f    =rr-y (16) (x  Xo) 2+Z2

Formal differentiation of equation 16 yields an expression for the 
disturbance to the thermal gradient.

v '[(*-*o)2+22]2 

At the surface, 2=0, the gradient disturbance approaches: 

dA9

,_, (17)^

=i r^
,=o TrJ- tD (x 

The last two equations correspond to Jeffreys' (1938) equations 17
jrri

and 18. The integrals require special treatment where -3  does not
ax

exist, but the mathematics is consistent with physical intuition.
If Gg(x) and Qq_(x) represent the vertical gradient and heat flow at 

(x), then g(x) and q(x) represent these quantities normalized to the 
regional values G and Q. Assuming positive heat flow in the direction 
of decreasing z, we have:

dA9 Qsi >   yv*/ ~n~ ¥v*v f\  t̂ '±\*j>  "yv*V' (19)

(G0 and Qo> denoting unit gradient and flux, are introduced for di 
mensional consistency.) Throughout this paper, "heat-flow anomaly" 
will refer to the normalized quantity, Ag(x), which can be used inter 
changeably with Agf(a;), the normalized gradient anomaly. By "heat 
flow" we shall always mean the normalized vertical heat flow:

Equation 18 can be written:

 +<*> j>(x\ dx- (2o)
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Note that equations 17, 18, and 20 can still be considered exact, 
provided we consider T as that function which properly represents 
the topographic relief at the reference plane.

Applying the Jeffreys assumption (eq. 15) yields an approximation 
for A<£ which we denote by A<£'.

A<z'(*o)=- f + V^3<fe- (21) 
* ' irj-co (x-x0) 2

A<z', and qr =l + &qr will be referred to as the "Jeffreys approximation" 
to A<£ and q, respectively. 

For a plane slope of height H and angle /3 we have:

h(x)=H,

=H+x tanft 0>z>  H cotft (22) 

= 0,   H cotp>x.

Substituting equations 22 in equation 21 yields:

2/ (*)=l+A2'(*)=l+itan/8ln where 0</3< (23a)

=1--  where,8=£ (23b)
7T X £i

Equations 23 apply for all x except the singular points x=0 and 
x= H cotjS. They represent an approximation to q which is given 
exactly by equations 12, 13, and 14. The two quantities q and q' 
are compared for selected values of ft in figure 2 and their difference:

D=q-q', 

is illustrated in figures 5 and 6 and tabulated in tables 1, 2, and 3.

COMPARISON OF THE EXACT 
AND APPROXIMATE SOLUTIONS

From figure 2 it is seen that the approximation based on the Jeffreys 
assumption is generally good for points beyond the toe or behind 
the brink of a plane slope if the angle is less than 30°. For angles less 
than about 9° it is also rather good for points on the sloping surface 
unless these points lie extremely close to the toe or brink. Inasmuch 
as the Jeffreys approximation can be applied to general topographic 
forms and the exact solution applies only to the plane slope, the 
difference between them will be investigated in an attempt to find 
better ways to represent the surface heat flow from more general 
topography.
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FIGURE 5. Difference (D) between the exact solution and the Jeffreys approxi 
mation to the heat flow beyond the toe (solid lines) and behind the brink 
(dashed lines) of a plane slope for various angles (0).

Figure 7 compares the temperature distribution over the reference 
plane assumed in the approximate solution (solid lines) with a sche 
matic representation of the distribution required by the exact solution 
(dashed lines) for gradient calculations at the point x0 beyond the 
toe (fig. 7A), on the slope (fig. 7B), and behind the brink (fig. 7(7). 
The two reference temperatures differ by a factor denoted by (1+t). 
At large distances from the slope, e vanishes, and the two representa 
tions of the reference-plane temperature coincide. The difference in 
the two representations is the effect (neglected in the approximation) 
of lateral variation in vertical gradient caused by the topographic 
relief. Thus e can be viewed as the effect of interaction of the slope 
with itself. For example, near x=0 in figure 7A, the vertical heat 
flow is lower than the regional average and hence so is the vertical 
gradient. Thus the reference-plane temperature is lower than antici 
pated by the approximation. The reverse is true near the toe of the 
slope (fig. 7A). In figure 7(7 where the reference plane is above the
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FIGURE 6. Difference (D) between the exact solution and the Jeffreys approxi 
mation to vertical heat flow on the inclined part of a plane slope. Upper half 
of the slope (t#<0.5) represented by solid curves and upper scale. Lower half 
(«j>0.5) represented by dashed lines and lower scale.
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0>x0 >-Hcotl3

FIGURE 7. Diagrammatic comparison of the reference-plane temperatures 
required by the exact solution (dashed lines) and Jeffreys approximation 
(solid lines) for stations beyond the toe (A), on the incline (B), and behind the 
brink (C) of a plane slope.
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topographic surface, high heat flow near the toe results in large grad 
ients and low reference-plane temperatures. Setting kq=q(x)   1, 
we can write an exact expression analogous to equation 21:

/0 .,(24)
(25)

or £=A<z-A2'=i p-M^rfx. (26)
IT J_oo I,*   J/oJ

It is seen that e(x) can be viewed (for positive h(x)} as the mean 
value of the gradient disturbance at x between the topographic surface 
and the reference plane or the mean value of the heat-flow disturbance 
there. For negative h it is, of course, a fictitious quantity but never 
theless a useful intuitive concept.

The difference, D, between the exact and approximate solutions at 
points on the horizontal surfaces is illustrated for various slope angles 
in figure 5. For angles less than 90° the Jeffreys approximation under 
estimates the heat flow near the toe (positive D) and at greater dis 
tances overestimates it (fig. 5, negative D). Positive D for small r 
is the second-order effect of the concentration of vertical flux by the 
slope near its toe. It can be viewed as a local effect of the positive 
portion of e in figure 7 A. At larger distances the exact solution yields 
lower heat flows than the Jeffreys approximation because of the gen 
eral lowering of reference-plane temperature caused by horizontal 
escape of heat from the sloping surface.

The positive values of D for small s are the local effects of reduced 
heat flow near the brink which increases reference-plane temperatures 
there when it operates through negative topography (fig. 7(7). For 
larger s, D is negative because of horizontal losses. Figure 6 illustrates 
D for points on the sloping surface. It is positive near the toe and 
brink and negative in the central portion, as one would anticipate 
from the above discussion.

From equations 23 it is seen that A<z' is symmetrical about the 
midpoint of the slope (x=  0.5flcot/3) with singularities at the brink 
and toe. The exact solution is asymmetrical because e is asymmetrical; 
the negatively infinite heat flow at the brink becomes zero heat flow 
in the exact solution, and heat flows are below the regional value 
over most of the slope. At the midpoint where qf is unity, the exact 
heat-flow anomaly, A<£, is given to a very good approximation by:

Ag^-0.8sin2j8, x= - 0.5H cot/3. (27)
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It is clear from the figures and tables discussed, that the difference, 
D, between Ag' and Ag generally decreases with decreasing slope 
angle, 0, and increasing distance from the slope.

THE PROBLEM OF THE GENERAL TWO-DIMENSIONAL SLOPE

We should like to apply the results obtained so far to the rapid 
estimation of surface heat-flow anomalies caused by real, roughly 
two-dimensional slopes on the earth's surface. At best, real slopes 
might resemble the plane-slope model, but they will never correspond 
to it in detail. Generally, real slopes will have distinguishing features 
such as humps, hollows, and rounded corners. Even very small de 
partures from the model might cause very large errors in the heat- 
flow estimate if they occur near the station. This situation is clear 
when it is considered that the superficial effect of a 2-km (kilometer) 
slope 1 km from the station is equivalent to that of a 10-m (meter) 
slope of the same shape 5 m from the station. (In the case of the latter 
slope, the effect would fall off more rapidly with depth.) If both 
slopes occurred together, their combined effect could not be accounted 
for with confidence by adding the exact solutions for the individual 
components, because each slope would affect the heat flow through 
the other and alter its effect on the heat flow at the station. Such 
interaction precludes the general superposition of plane slopes. It is 
possible to perform calculations like those of the first section to obtain 
the exact solution for two coexisting plane slopes, but the results 
would contain four parameters instead of two, and could not be 
presented in any simple way for rapid graphical computations. Fur 
thermore, we would be little better off as far as real topography is 
concerned.

Unlike the exact solution, Ag, the Jeffreys approximation, Ag', 
can be obtained easily for any surface shape by adding individual 
contributions of the topographic elements. It is clear that it is a good 
approximation under some conditions, but as we have already seen, 
it can also be very much in error. By approximating the effect of a 
plane slope by the sum of exact effects of smaller plane slopes of the 
same angle, it can be shown that neither the Jeffreys approximation 
nor the summing of exact solutions is consistently better as an approx 
imating scheme. It might be suspected that if a general slope were 
decomposed into plane-slope components so small that the sum of 
their Z>'s was negligible, then their individual exact contributions 
could be added to obtain the effect of the general slope. However it 
can be shown that such an approximation approaches the Jeffreys 
result as the components become small. It can be seen from the change 
of sign of D with x (figs. 5 and 6), that neither of these approximation 
schemes can even be relied upon to give a limit (upper or lower) to
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the heat-flow anomaly from, a general slope. Therefore, in the sections 
that follow, more indirect methods will be used to apply the results 
for a plane slope to estimate the effects of more complicated topo 
graphic relief.

HEAT FLUX ON A HORIZONTAL SURFACE BETWEEN 
TWO PLANE SLOPES

It has been pointed out that the plane slope is a highly idealized 
topographic form, but that more complicated exact models generally 
lose the advantage of the two-parameter representation or of intuitive 
simplicity. Extending the plane-slope results to characterize more 
general configurations is therefore worthwhile, and can be done with 
limited success for the heat flux on a horizontal surface between two 
plane slopes (ha (x) and h6 (x), fig. 8). There are three cases. In the first 
(fig. SA) , the station lies on the horizontal surface between two positive 
plane slopes. We shall call this the plane valley. In the second case, 
the plane ridge (fig. 8B), the station lies on the horizontal surface be 
tween two negative plane slopes. The third case is the plane bench 
(fig. 80) in which the station lies on the horizontal surf ace between 
plane slopes of opposite sign. In presenting the general theory we shall 
refer to the example of case 1.

Consider the half space z^>Q upon whose surface 2=0,   <» <^x<^-\-«> 
are placed two plane slopes ha (x) and hj,(x) as illustrated in figure 9. 
We denote the topographic surface as h(x) :

h(x)=ha(x)-\-hi,(x)=ha(x), z>a

=0, a<x<b (28)

We shall consider the surface hsat flux at a point x0 on the horizontal 
surface   strip a>z>6. The heat-flow anomaly, Ag(a:0), cannot be 
obtained by simply adding the heat-flow anomaly Aga (»o) and Ag6 (zo) 
of the independent plane slopes because the presence of ha modifies the 
heat flow through hb (and conversely) and this modification, in turn, 
further modifies the heat flow through ha and so on. There is, however, 
a hypothetical temperature distribution, T(x), over the plane 2=0 
that will affect the heat flow at x0 in the same way as the isothermal 
topographic surface h(x) =ha(x) +h6 (x) . Although the plane slopes 
are not superimposable in the geometric sense, their collective con 
tributions to the reference-plane temperature are. We therefore 
represent the reference-plane temperature:

(29)
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htt

a x0

B

FIGURE 8. Coexisting plane slopes: A, a plane valley, B, a plane ridge, and C, a
plane bench.

Taking only the first term hi each series yields the simple Jeffreys 
approximation to the reference-plane temperature. The second terms 
have the same meaning as e in equation 24 (fig. 9A, B). These terms 
adjust the Jeffreys approximation for the independent variation in 
vertical gradient within each topographic element; that is, they adjust 
for the interaction of each slope with itself. Approximating T(x) by 
the first two terms of each series is equivalent to approximating



B

Gha [5q ba (l+e ba )+---] 

Gh h [dq ab (l+e ab )+---]

FIGURE 9. Geometrical significance of the leading terms (A, B) of equation 29 
and the interaction terms (C) for the plane valley.

q(x0) by the sum of the exact solutions for the effects of ha and h* 
independently. The term with subscript "ba" is the effect of the first- 
order interaction of h6 with ha. 8q6a is the additional flux that would 
result across the reference plane beneath ha if ha were not there. e ha plays 
a role similar to ea, adjusting the reference-plane temperature for 
the interaction of the flux increment Sqba with the slope ha (fig. 9(7). It 
is represented by a different symbol because we have no theory to 
evaluate it, inasmuch as dq6a is a function of x. Similarly the "ab" term 
represents the first-order interaction effect of ha on the reference-plane 
temperature beneath hh . The flux increment 5gaft increases the ref 
erence-plane temperature beneath hj, and this in turn increases the 
flux through ha by an amount 5gafta .and increases the reference-plane 
temperature there by Gha8qaha (l+ea6a), and so on. Neglecting the 
"e" in the interaction terms results in a Jeffreys-type approximation 
to them. 

For convenience equation 29 is rewritten:

T(x)=ra+r60+ra6a+T6o6a+* * *+T6+ra6+r6a6+ra6o6+*     (30)
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where Ta=Gha(l+ fa), T6=(?A6(l+e&).

a), * *&

The asterisks represent an arbitrary number of alternating subscripts. 
The terms with multiple subscripts will be referred to as interaction 
terms, with T6a and Ta6 being the first-order ones and so on. The 
terms are all functions of x. Increasing any one of them increases 
T(x), and by equation 21 increases the heat flow.

As long as ha (x) and hj,(x) are plane slopes we may replace 8qba (x) by 
Ag>(a;) and Sqa1) (x) by Aqa (x). These quantities decrease in magnitude 
with increasing distance from h6 and ha respectively. (This condition 
and the analysis that follows are valid even if ha(x) and hj,(x) are not 
plane slopes as long as each is of one sign.) Hence, the greatest 
absolute value of Ag6 (a;) in ha is attained at the point of closest ap 
proach of ha to hi,, that is, at the toe, x=a. Replacing 5g6a by its 
maximum absolute value we obtain the inequality:

|Wft.(ar) (l+«J|<Mft(a) (1+«J|. (31)

The quantities within the absolute value signs will always be of the 
same sign.

The appropriate value of e6a on the right side of equation 5-4 is 
very nearly ea because of the assignment of the constant value, 
Ag6 (a), to the heat increment. This substitution is largely a matter 
of convenience, as the e is of higher order than the A<£. Thus:

(32)

(33) 

Proceeding to higher order terms with similar reasoning:

(34)

(35)

(36)

(37)

with similar expressions for terms of higher order.
Denoting the quantities in absolute value signs on the right side of 

equations 32-37 with a prime we have in general :

and |T.*«i(aO|<|T',,,i(*)|. (38)
298-334 0 69     S
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The corresponding primed and unprimed T's will always be of the 
same sign.

The series of equation 30 is dominated term by term by:

which by equations 32-37 can be written:

* *]

And this converges if:
A 

and Ag6(a)<l. (39)

Therefore the series of equation 30 is absolutely convergent under 
condition 39. (Absolute value signs are not needed in condition 39, 
as Ag can never be less than   1 except in overhanging topography. 
At a projecting corner its value is equal to  1, and as this value is 
known we shall never want to calculate it.) No attempt will be made 
to establish rigorously that the representation of T(x) in equation 30 
actually converges to the required limit. In general if 8qab and 8qba are 
not too large it can be expected to converge rapidly and to yield an 
excellent approximation.

Relations 38 apply whenever T(x), equation 30 represents the 
temperature on a horizontal plane separating two plane slopes. It 
has been pointed out that there are three cases. We shall now consider 
them individually.

CASE 1, PLANE VALLEY (ha (x) >0, h b (x) >0)

In this case ha can only increase the heat flow through Ae, and 
conversely. Hence the interaction terms of equation 30 are all positive 
and so are their primed approximations relations 38. Therefore, 
neglecting the interaction terms yields a lower limit to the heat-flow 
anomaly, Ag(x0), and replacing them by the primed terms yields an 
upper limit.

Using equation 21:

*' (40)

(Ta+ T'*+ T'a6a+* * *]

} f?r 
T^T (X Xt
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-^ (41)

but:

, . , N ,._.
-» - ^=A^(^' (43) 

and finally:

(44)

The application of inequality 44 is illustrated with a few simple 
numerical examples.

Example 1.   Suppose ha and hh are both 45° slopes of equal height 
(H) separated by a distance (a-b) of twice their height (2H). To find 
the heat flow at the midpoint we need the following from table 1 :

, r=2)=0.108

Then by inequality 44 :

0.l78+0.l78<Ag(a^)<[0.178+0.178] [1+0.108+0.012].

Hence
0.356<Ag(zo)<0.399, 

or equivalently,

The corresponding result from the Jeffreys approximation is 1.44.
Example 2.   Taking the same configuration as in example 1, we 

now consider x0 to be Q.lH from ha and 1.9H from &6 . Since the 
configuration is unchanged, the series is the same as in the previous 
example   its sum being 1.120. But now:

, r=0.1)=0.644 

, r=01.9)=0.11,
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where the last value is taken from plate 1. Hence:

0.644+0.11<A2(z0)<[0.644+0.11] [1.120], 
and

In this example g'=1.90.
Example 3.   Leaving hj, and the separation, a b, unchanged we 

now double the height of ha and change its angle to 30°. Assume 
XQ is midway between the slopes as in example 1. From table 1:

, r=l)=0.162,

, r=0.5) =0.243,

, r=2) =0.108,

°, r=l)=0.178. 

Inequality 44 yields:

0.243+0.178<A2(3o)<0.243 [1+0.108+0.01 7J+0.178 [1+0.162+0.017], 

or equivalently,

1.42<2(zo)<1.48.

In this example the Jeffreys approximation is 2' = 1.50.
It is seen that qf is a rather good approximation in all these ex 

amples. This is partly due to the fact that over the useful range of 
r and 0 for inequality 44, D is negative (fig. 5), and this tends to 
compensate for the positive interaction terms in the inequality.

CASE 2, PLANE RIDGE (ha (x) <0, hb (x) <0) 

In this case the series of equation 30 alternates in sign as follows:

\-* * *. (45)

The factors SqaJ> and 5g>a of equation 29 are negative, but their 
effects on T(x) are positive because ha and hb are negative. The in 
crease in reference-plane temperature (TaJ> and Tba) caused by these 
terms results in the second-order heat increments Sqaba and 5g>ae 
(eq. 29) being positive with a negative effect on reference-plane 
temperature (Tat>a and T6a6) and so on.

From the discussion on convergence we know that the sign of the 
series of interaction terms is the same as that of their leading terms,
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T6a and Ta6 ; hence, neglecting interaction gives a lower limit to 
Ag(xo)- Furthermore the error in approximating the interaction is 
of the same sign as the first term neglected; hence considering only 
the first-order interaction gives an upper limit.

Therefore:

]. (46)

Example 1.   Assume, as before, that ha (x) and hj,(x) are of the 
same height and are separated by a distance (fig. 8B, a b) equal to 
twice their height. For x0 midway between two slopes of 45° we obtain 
from table 2 :

and from 46 :

-0.498<Ag(zo)<-0.498 [1-0.149]= -0.424,

or equivalently,
0.502<g(zo)<0.576.

The corresponding Jeffreys result (g'=0.56) lies in the bracketing 
interval.

The good agreement of qf is again due in part to the sign of D in 
these examples; that is, the Jeffreys approximation is better for the 
combination of slopes than for the slopes individually.

Example 2.   If both slope angles were 5°, the result would be :

0.86<g(z0)«).87. 
In this case 2'= 0.87.

Example 3.   Considering the 45° slopes again, we place x0 one- 
tenth H from a and l.QH from b and obtain:

0.23<g(z0)<0.34.

In this case, D is strongly positive for 0=45°, s=0.1 (fig. 5), and 
hence the Jeffreys approximation (#'=0.10) falls well below the 
bracketing interval.
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CASE 3, PLANE BENCH (h a (x) >0, h b (x) <0)

In this case the signs in the series of equation 30 are alternating 
in groups of two as follows:

|-|rlrtrt|-^ * *. (4?)
To see this we note that Ta and T* must have the same signs as ha 
and hi, respectively. A positive sign for Ta leads to a positive heat-flow 
increment dqaj> through h6 and negative Tab because h* is negative. 
However, negative Tb leads to negative Tba, the sign being preserved 
because ha is positive. Thus any term in the 6 series leads to a next 
higher order term of the same sign in the a series, whereas the sign 
is reversed by negative h* in going from the a series to the next order 
term in the b series.

By grouping consecutive terms of the same sign it can be seen that 
the total effect of the interaction in the a series is negative and that 
Ta provides an upper limit and that Ta +TDa -\-Ta1)a is a lower limit. 
The lower limit can be replaced by the still smaller but more manage 
able quantity:

J-a~\~T ea ~T f aba-

The grouping shows that a lower limit to the 6 series (eq 47) is 
Tft+Taj, which can be replaced by the smaller quantity Tt-\-T'ab . 

An upper limit to the 6 series is :

(48)

(We cannot select T6 as the upper limit because there is no assurance 
that the second term dominates the sum of the third and fourth.) To 
get expression 48 in a manageable form we write :

J- »~T J- ab~\- J- 6o6~T -?o6o6<v -* 6~f" -Mw»~l~ -*a&a*<v -*6~l~ -*&<z»~l~ ̂ 0606-

Although deleting Tab weakens the upper limit, it is necessary to 
do so because we have no assurance that the inequality would be 
preserved when Taft was replaced by T'aft . Thus:

1 f+ "
7r~ I ( Ta~\~ -M,+ -tea

and hence:

], (49a)
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and:

g6(a)]. (49b)

Example.   Assume as before that ha and h* are of equal height 
(H) and separated by a distance (a-b) of twice this height. If the 
slope angles are both at 45° and x0 is midway between them, we obtain 
from tables 1 and 2 :

, r=l)=+0.178, 

Aga(6)=Ag(45 0, r=2)=+0.108,

s=2) =  0.149. 

By inequality 49a:

Ag(a;o)>0.178 [1 0.149 0.016] 0.249 [1+0.108]

=0.178[0.835]-0.249[1.108]=-0.127.

By inequality 49b:

Ag(zo)<+0.178-0.249[l-0.16-0.002]=+0.178

-0.249 [0.982]=-0.067, 
hence:

0.87<$(zo)<0.93.

By comparison q/ =1.00.

If xQ is 1/4.H" from the toe of ha :

1.02<g(a;o)<1.09 and g'=1.19. 

If it is l/4:H from the brink:

0.70<g(a;o)<0.77 and g'=0.81. 

If XQ is O.lH from the toe of ha and 1.9H from the brink of hb :

1.37<g(a;o)<1.50 and g'=1.63. 

With x0 only O.lH from the brink:

0.41<g(a;o)<0.51 and g'=0.37.

The Jeffreys approximation tends to be too low very close to the 
brink, but elsewhere on the bench it is generally too high.
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In summary, a lower limit to the heat-flow anomaly on the hori 
zontal surface between two plane slopes (ha and A6) of the same sign 
(cases 1 and 2) is provided by the sum of the independent exact 
solutions for each slope (Aga (a;o) +Ag6 (a;o)). The upper limit is provided 
by adding an overestimate of interaction effects. If the horizontal 
surface lies between plane slopes of opposite sign (case 3) both the 
upper and lower limits contain interaction terms, but the sum of the 
independent exact solutions forms the upper limit to terms of second 
order in the interaction. In all three cases the bracketing interval 
(ffupper-Siower) is represented by the first>order interaction terms with 
or without higher order effects.

2uPPer-2iower= l&QaM ty*(a) +&&(xQ)&qa (b') \ +higher order. (50) 

Inasmuch as:

hence in all three cases:

(51)

where the two signs in the last factor yield upper and lower limits. 
Relation 51 forms a useful criterion for neglecting interaction. As 
the slopes become smaller or farther apart, the bracketing intervals 
become small, and the heat flow is given to a good approximation by 
the sum of the independent exact solutions [Aqa (x0) +Ag6 (a:o)] in all 
three cases. In all these cases the linear approximation gives sur 
prisingly good results over a wide variety of conditions. It can, how 
ever, contain considerable error at points very near steep slopes.

GEOMETRIC BRACKETING

Consider a slope, ha (x), to which is added a bump, h»(x), such that:

Uniform heat flow at depth is assumed as before; hence the vertical 
flux at the surface is positive except at projecting corners where it is 
zero (fig. 10).

If Aga (x) represents the vertical surface flux through ha when ha is 
isothermal and Aga6 (a;), the vertical flux through ha -{-h 6 when it is 
held isothermal, then:

(52)
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FIGURE 10. Plane slope with a positive (solid curve) or negative (dashed curve)
bump.

This can be seen by noting that for points not in hb, the isothermal 
surface ha -\-hi, can be replaced by ha isothermal outside of Xi<^x<^x2 
and with some positive temperature distribution over the part of the 
surface Xi<^x<^X2. This temperature excess can be replaced by a 
distribution of doublets, positive downward, which in turn will in 
crease the vertical flux at all points outside of hb on ha.

If hb' is a negative bump (fig. 10), the equivalent temperature 
distribution on ha in Xi<^x<^X2 is generally negative. The resulting 
bowing down of the isotherms in Xi<ix<^Xz will result in a convergence 
of flux there that can only result in a decrease in vertical flux at all 
points on ha outside of hb .

More generally, let h(x) be a general surface and hu (x) and hi(x) 
be two other surfaces such that:

huW^hW^h^x), + ro >z>-°>. (53)

The heat-flow anomalies on each surface are denoted respectively by 
Aga(z), Ag(a:), and Agj(a;). Then, at any point x0 (not a sharp corner) 
at which:

hu(x0)=h(xQ), (54a) 
we have,

Ag«(zo)>Ag(Zo), (54b) 

and where,

h(xQ)=hl (xQ), (55a) 

then,

(55b)
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It follows that where,

hu(x0)=h(x0)=hl (x0), (56a) 
we have,

Relations 53-56 will be referred to as the theorem on geometric 
bracketing. It is illustrated in figure 11 where h(x) is represented 
by the horizontal lines, OL and U'P, and the wavy line (LtiUU'} 
joining them. The plane slope OUU' P represents hu and the plane 
slope OLL'P represents hi. Then relation 56 applies for all points 
(z0) on OL and U'P. One-sided limits are given at x0 =ti (relation 54) 
and at x0=^ (relation 55).

The results of this section can be applied to those of the last section 
to establish limits to the heat-flow anomaly at stations interior to 
many real valleys, ridges, and benches.

The method of geometric bracketing can lead quickly to a de 
termination of whether or not specific topographic features are signifi 
cant in heat-flow studies. For example, the effect of any positive 
feature is overestimated by that of a cliff of the same height and 
distance from the station. Thus a positive feature whose height is less 
than 10 percent of its distance from the station cannot affect the heat 
flow there by more than 2.8 percent (table 1) ; if its height is 5 percent 
of the distance the limit is IK percent. The corresponding limits for 
negative features are 3.6 and 1.7 percent. (It is surprising that the 
anomaly 10 slope heights from the toe of a 90° cliff, 2.8 percent, is not 
very different from the anomaly 10 slope heights from the toe of a 5° 
slope, 2.1 percent, table 1.) If features of the same sign occur at such 
distances on both sides of the station, their interaction would be 
negligible (inequality 51), and the limiting effects are obtained by 
adding the individual limits. If the features are of opposite sign, the 
limiting effect is the one with the larger magnitude. Other examples 
can be taken quickly from table 1. A positive slope whose height is

O___ L U

P 

FIGURE 11. Geometric bracketing of a general slope by two plane slopes.
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equal to its distance from the station cannot affect the heat flow by 
more than 10 percent if its maximum slope angle is 9°. A valley 1-km 
deep with a 10-km flood plane will not increase the heat flow at its 
center by more than 10 percent if the walls are not steeper than 30°. 
(The interaction is negligible by inequality 51.)

When drilling holes to determine heat flow, it is desirable to select 
sites at which the topographic anomaly is minimized. Thus, site selec 
tion often involves making many calculations of the type just dis 
cussed. I have found it helpful to take a copy of figure 3 to the field 
for this purpose.

Although the bracketing described is achieved with a two-dimen 
sional model, it can, of course, be applied to three-dimensional topo 
graphic forms.

The methods of this section often give a useful upper or lower limit 
to the topographic anomaly, but the condition that the bracketing 
slopes be everywhere above or below the real surface usually leads to 
bracketing intervals that are rather large. A more refined method will 
therefore be considered in the next section.

EQUIVALENT SLOPES

To consider the example illustrated in figure 10 in more detail we 
write:

dx

r^  dx

> i ,\ a
, dx, (57)

where Ae(x)=eab(x)  ea (x). (In this section and those that follow the 
quantity e will be understood to include the quantity e which applies 
to the special case of a plane slope.)

It was pointed out in the previous section that for x0 not in (jci, a;2) 
the difference on the left side of equation 57 has the sign of hh , which 
is also the sign of Ag'6 . Neglecting the second and third terms of the 
right side of equation 57 is equivalent to approximating Aga6 as the 
sum of the exact solution, Aga, and the Jeffreys approximation to the 
perturbation hft , that is,

(58)

We know that the correction term is of the right sign (if h* is of one 
sign), but it is not known that the approximation to A<?a6 is any better 
with it than without it.
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According to equation 26, ea(x) represents the anomaly in the mean 
gradient in ha at x. Therefore, the second term on the right side of 
equation 57 adjusts Ag'ft for departures of the local gradient from 
unity at A 6 .

Thus the approximation:

*°' (59)
is a refined Jeffreys-type representation of the perturbation in which 
the effect on reference-plane temperature is adjusted for local condi 
tions of heat flow through h*.

It is seen that positive ea (high heat flow through h») increases the 
magnitude of the correction, and negative ea reduces it as might be 
expected. In this sense, ea can be viewed as a weighting function.

The Ae(x) in the third term of equation 57 represents the reaction 
of the mean gradient throughout the topography occasioned by adding 
the perturbation h* to ha. If ha is positive and hj, negative, Ae will 
tend to be positive in (2:1,2:2) because of the downward crowding of 
the isotherms. It will, however, tend to be negative for x not in 
(2:1,2:2) for reasons discussed in the previous section. For hb positive 
the opposite holds true. Unlike the first and second terms, which 
are integrated only over the region of the perturbation, the third 
term is integrated over an infinite domain. It is to some extent self- 
canceling, as it tends to be of opposite sign to Ag'6 over the range 
£i<2:<2:2 and of the same sign in 2:<2:i, x^>x2 .

It is clear that the errors arising from approximating Aa6 with a 
plane slope ha and correction terms tend to grow with the magnitude 
of A6 . A better approximation might therefore be obtained by selecting 
ha in such a way that hb has parts of both signs so that its magnitude 
is reduced, and the correction terms tend to cancel.

In order to consider rather general topographic configurations, and 
still restrict the discussion to slopelike forms, we shall define a "slope 
form" as two horizontal half planes joined by a general (two-di 
mensional) surface whose highest point is the intersection with the 
upper halfplane (the brink) and whose lowest point is the intersection 
with the lower halfplane (the toe) . (Where no ambiguity will result we 
shall refer to this figure simply as a "slope.") The width of the sloping 
portion of a slope form is finite; hence it does not include the monocline 
of Jaeger and Sass (1963). Consider the slope form Aa6>0 whose toe 
is at & and brink at £2 (fig- 12). To approximate the heat flow at x0 
in front of the toe we consider hat> as the sum of the plane slope of the 
same height, ha , and the element, hb, with positive and negative 
portions.
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FIGURE 12. Notation for the discussion of slope forms. 

If ha is chosen in such a way that:

x 

then Ag'6 (a;o) vanishes, and hence:

(60)

(61)

Thus any two slopes hat> and ha that satisfy 60 must have the same 
Jeffreys approximation at XQ . They will be referred to as "equivalent 
slopes at a;0". If ha is chosen to be equivalent to Aa6 at x0, equation 57 
becomes:

^ " lŷ dx. (62)

This choice automatically assures that the first>order contributions of 
irregular topographic features are accounted for, so that after weighting 
their height by the inverse square of their distance from the station, 
their sum is zero. It also assures a symmetry that justifies the inter 
pretation of ea as a weighting function in the second-order correction 
term, and it leads to canceling effects both in and out of (&,£}) in 
the third-order term.

It is clear that any two slopes equivalent to a third slope at x0 are 
equivalent to each other there. For any slope ha i, there is a family of
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equivalent plane slopes at any point XQ not on the slopes. This can 
be seen by noting that given ha equivalent to Aa6 (fig. 13) another 
slope, h*, equivalent to ha can be drawn by increasing the slope angle 
and distance from the station simultaneously in such a way as to keep 
A<^ constant. Thus, the flatter the equivalent plane slope, the closer 
it extends toward the station. The equivalent cliff is the member of the 
family farthest from the station.

For any slope form it will be possible to select plane slopes equivalent 
at x0 in such a way that A6 has one positive and one negative section, 
as long as z0 lies a finite distance beyond the toe or behind the brink. 
We shall denote the section near the toe by hbi and the other by A62 .

FIGURE 13. Notation for the discussion of equivalent plane slopes (h* and h a).
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Those plane equivalent slopes that are steeper than Aa6 , hi the sense 
that they make h^ positive, will be denoted by h*. The flatter ones 
(which make h^ negative) will be denoted by ha (fig- 13). The heat- 
flow anomalies produced at XQ by h* and ha will be denoted Ag* (XQ) 
and Aga (x0) respectively. The coordinates of the toe and brink of Aa6 
will be denoted respectively & and £2 ,and those of ha and h* by xi,x2 
and x* ,x* . The coordinate of the intersection of ha i> with the sloping

A * A parts of ha or h* are denoted respectively by X or X*. Other quantities
related to these slopes such as ea and hb will also be distinguished by 
* or A .

Replacing ha by ha in. equation 57 yields:

1 r*z hb2 e

(63) 
However, from equation 60 we know that:

-

Inasmuch as e a is a decreasing function of distance from the toe (x-xi) 
in (xi,X2) the sum of the two second-order integrals assumes the sign 
of A &1 , which, hi this case, is negative.

As long as the second-order terms dominate the third-order integral 
(which represents interactions that generally tend to cancel) we have 
the inequality:

(65)

Replacing ha by h* in equation 57 and rearranging the integrands 
3 obtain:we obtain:

(66)

The changed form of the integrands is necessary because e* is not 
defined over the entire domain of h*, but eal) is. If ean is generally 
larger in the lower part of the slope (below X*) than in the upper part, 
the second-order integrals will again take the sign of hbl , now positive. 
Assuming again that the third-order effects are dominated we have:

(67)
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In developing inequalities 65 and 67 we have used the example of 
ha i, positive   the point x0 was beyond the toe. If x0 lies behind the 
brink, Aa6 and ha are negative and occupy all or part of the region 

>   o>. For this case the equation corresponding to 63 is:

1 f * 2 hbi*a i _i_ ! f*2 hal ,

(68)

and only the integrand in the third integral undergoes a change of 
sign. Thus the arguments leading to inequalities 65 and 67 apply 
whether hai, is positive or negative.

There is, however, one difference between the two examples worth 
noting. From equation 64 it is seen that:

where the integrations are carried out over the domains in which the 
integrands are defined. For positive Aa&, the closer XQ lies to the toe 
of the slope, the stronger inequality 69 becomes, as a very small hbl 
will balance a very large A &2 when they are weighted by the inverse 
square of their distance from the station. Inequalities 65 and 67 arise 
from the difference in the mean values of the weighting function, ea

de . 
(or eai>), in the two integrals. Inasmuch as -r~ is generally greatest

near the toe, the difference between the mean value of e in the two 
integrals will be greater as the width of hbl becomes smaller. Thus 
the closer x0 comes to the toe, the stronger inequalities 65 and 67 
tend to become.

For negative ha6, h^ and h^ are multiplied by the inverse square 
of their distance from the brink in equation 64. Thus:

(70)

and for XQ very near the brink a very small /t&2 will balance a very 
large A &1 ; as x0 approaches the brink so does X. However, near the 
brink the weighting functions ea and eaft are generally undergoing 
their least change with x. Thus the closer XQ comes to the brink, the 
weaker inequalities 65 and 67 tend to become. 

To summarize we combine inequalities 65 and 67 :

(71)
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The mathematical conditions on ha i> and #0 sufficient for the validity 
of inequality 71 are:

1. That hab be a slope form.
2. That ea t> generally be greater below the intersection (X*) of hai> 

with h* than above it.
3. That the second-order terms dominate the higher order inter 

action effects.
The condition that Aa6 be a slope form assures that flatter equivalent 

plane slopes ha and steeper ones A* can be drawn for any x0 not on 
the sloping portion. The second condition is less explicit than we might 
like, but it is difficult to imagine cases in which it would be violated. 
This can be made clearer by rewriting equation 66 :

** h *

^ (72)
x -o ! -o 2

Because h* is equivalent to ha i>, we know the sum of the first two 
integrals would be the negative of the third integral if the e's were 
unity. In this form the weighting function is e* (a strongly decreasing 
function of x) in x*<^x<^a° , and ea t in the region near the toe, 
£*>£>£i> where it would generally be positive. Any slope ha i> for 
which the first two integrals did not dominate the third must be very 
unusual. For example it might be steep at the top with very thin, 
high ridges (resembling cooling fins) near the toe. It could hardly be 
important in terrestrial heat-flow applications.

Violations of the last condition are most likely to occur at points 
very close to the brink where the heat flow is very close to zero, and 
small effects of higher order can dominate.

TESTS OF INEQUALITY 71

Unfortunately, the only available exact solution for a slope of finite 
width (a slope form) is that derived for the plane slope in the second 
section. Therefore, to test the inequality we shall represent ha * by 
the plane slope of angle 0, and approximate its effect at any point 
#o by equivalent plane slopes ha of angle ft and h* of angle 0* where:

Results for two examples (0=30°, 0*=45°, £=15°; and (8=15°, 
,8*=22^0 , ,8=9°) are presented in figure 14.

298^334 O  «9     4
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o.ooi

s (FORP<0)

FIGURE 14.   Comparison of the anomaly caused by a plane slope of angle B 
with the anomaly from bracketing equivalent plane slopes of angle 3 and 8*. 
Jeffreys approximation is shown as dashed line.

In this example inequality 71 holds over the range of four orders 
of magnitude of r and s. It is seen that the bracketing interval for 
s (points behind the brink) is smaller than the corresponding one for 
r, and that it tends to decrease for very small s whereas it increases 
for very small r. Inasmuch as a weakening of inequality 7 1 is equivalent 
to a decrease in the bracketing interval, these results are consistent 
with the foregoing discussion.
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To the extent that inequality 71 applies, it should generally follow 
that in any family of plane slopes of equal height which yield the 
same Jeffreys approximation at points on the horizontal surfaces the 
heat flow should decrease with increasing slope angle. This relation 
is tested numerically in tables 4 and 5 where each pair of columns 
represents members of a family of plane equivalent slopes whose 
Jeffreys approximation is the value of q' given at the top. The column 
headed r (or s) gives the distance of the toe (or brink) from the 
station, and the column headed q gives the exact value of the heat 
flow there. It is seen that the relation is satisfied except for points 
very close to the brink for the steepest angles (see the two entries with 
asterisks, case g'=  1.00, table 5). Fortunately, for such points a 
reliable lower limit is usually obtained easily by geometric bracketing. 
It is generally found to be close to the values given by inequality 71 
in any case.

TABLE 4. Comparison of exact solutions for families of positive equivalent plane
slopes

[Powers of 10 are denoted by their exponents in parentheses]

g'=3 g'=2.5 g'=2 g'=1.5

90° 
60° 
45° 
30° 
22^° 
18° 
15° 
HK°
9°
5°
3°
1*4°
1°

1.6 
1.6 
1.9 
3.3 
6.2 
1.2 
2.5

-1)
-2)

3
-3
-10)

1.7 
2.6 
3.5
4.7 
5.4 
5.8 
6.1

2.1 (-1) 
4.1 (-2) 
9.1 -3) 
4.9 -4) 
2.8 -5) 
1.5 -6) 
8.6 -8) 
2.6 -10)

1.6 
2.1 
2.6 
3.2 
3.5 
3.7 
3.9 
4.1

3.2 (-1) 
1.1 (-D 
4.5 (-2) 
7.5 (-3) 
1.2 (-3) 
1.9 (-4) 
3.0 (-5) 
7.0 (-7)
1.5 (-8)

1.43 
1.70 
1.90 
2.16 
2.31 
2.40 
2.45 
2.53
2.57

6.4 (-1) 
3.9 (-1) 
2.6 (-1) 
1.2 (-1) 
5.6 (-2) 
2.5 (-2) 
1.1 -2) 
1.9 -3)
3.1 -4)
1.8 -7)

1.27 
1.35 
1.40 
1.47 
1.52 
1.54 
1.56 
1.59
1.60
1.62

3.2 (+0) 
2.9 (+0) 
2.7 f+0) 
2.4 (+0) 
2.1 (+0) 
1.9 (+0) 
1.7 (+0) 
1.3 (+0)
1.0 +0)
3.2 -1)
4.8 -2)
2.4 -4)
8.7 -7)

1.07 
1.082 
1.085 
1.088 
1.091 
1.093 
1.094 
1.096
1.098
1.101
1.103
1.104
1.105

TABLE 5. Comparison of exact solutions for families of negative equivalent plane
slopes

[Powers of 10 are denoted by their exponents in parentheses]

g'=-1.00 g'=-0.50 g'=0.00 g'=+0.50 g'=+0.90

90°
60°
45°
30°
22^°
18°
15°
1«4"
9°
5°
3°
1W°
1°

1.6
1.6
1.9
3.3
6/2
1.2
2.4

(-1)
(-2)
(-3)
(-5)
(-7)
(-8)
(-10)

0.124*
.105*
.103
.107
.112
.115
.118

2.1 (-1)
4.1 (-2)
9. 1 (-3)
4.9 (-4)
2.8 (-5)
1.5 (-6)
8.6 (-8)
2.6 (-10)

0.164
.168
.175
.185
.192
.197
.200
.206

3.2 (-1)
1.1 (-D
4.5 (-2)
7.5 (-3)
1.2 (-3)
1.9 (-4)
3.0 (-5)
7.0 (-7)
1.5 (-8)

0.240
.278
.298
.319
.330
.336
.341
347

.351

6.4 (-1)
3.9 (-1)
2.6 (-1)
1.2 (-1)
5.6 (-2)
2.5 (-2)
1.1 (-2)
1 Q ( Q\

3.1 (-4)
2.0 (-5)
1.8 (-7)

0.434
.496
.525
.553
.567
.576
.581
.588
.591
.595
.598

3.2 (-0)
2.9 (-0)
2.7 (-0)
2.4 (-0)
2.1 (-0)
1.9 (-0)
1.7 (-0)
1.3 (-0)
1.0 (-0)
3.2 (-1)
4.8 (-2)
2.4 (-4)
8.7 (-7)

0.8725
.8807
.8848
.8895
.8924
.8943
.8958
.8978
.8991
.9018
.9031
.9040
.9043
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SLOPES CONCAVE AT THE TOE OB CONVEX AT THE BRINK

To investigate some of the implications of inequality 71 it is con 
venient to represent D as a function of ft and Ag' (figs. 15 and 16), 
where D is the quantity that must be added to A#' to obtain A# for 
a plane slope of angle ft.

<7')-A<7'. (73)

+0.5

+0.4

+0.3

+0.2

+0.1

D 0

-0.1

-0.2

-0.3

-0.4

-0.5
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.5

FIGURE 15. Error in the Jeffreys approximation (D) as a function of the Jeffreys 
approximation (Ag') for constant positive slope angle, 0 (solid curves), or con 
stant distance from t,he toe, r (dashed curves).



D

TOPOGRAPHY AND SUPERFICIAL THERMAL GRADIENTS E47

+0.7

+0.6

+0.5

+0.4

+0.3

+0.2

+0.1

-0.2 -0.4 -0.6 -0.8 -1.0 -1.2 -1.4-1.5
-0.1

FIGUEE 16. Error in the Jeffreys approximation (D) as a function of the Jeffreys 
approximation (Ag') for constant negative slope angle, j8 (solid curves), or con 
stant distance from the brink, s (dashed curves).

We have just seen that generally:

Z>(|81 ,A2')>^(|82,Ag:')j &<&, (74)

that is, smaller angles yield (algebraically) larger Z>'s for the same 
Ag'. It is seen that this is true over the range of figures 15 and 16. 
In this notation, inequality 71 becomes:

D*(ft*,Aqf (x0))<^D(^qf (x0))<^D(ft)^qf (X(i)). (75)

The bracketing interval in inequality 75 (or inequality 71) can be 
read directly from figures 15 and 16 for any Ag' for selected angles,

A

/3* and ft, of the bracketing plane slopes. (For example, if Ag'=+0.5,
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i8*=600 , 0=45°, then the interval is 0.05.) The limiting values of 
A<? in equality 71 can be determined by adding the limiting values 
of D from figures 15 or 16 to the abscissa, A#'. (In the example

A

D*=  0.15, D=-0.10 and in equality 71 gives 0.35<A?<0.40.)
From inequality 74 or from figures 14-16, it is clear that smaller 

bracketing intervals are obtained by selecting smaller values of ft*
A

and larger values of ft. The smallest value of ft* is associated with 
the plane slope, h*a (xo), that is closest to the station. The largest value

A A

of ft is associated with the plane slope, h a (x0), that is farthest from 
the station. At present we are chiefly concerned with the upper limit

A

and ha - For positive relief Xi cannot be farther from the station than
A

£1 (fig. 13) because of the condition /i &1 <CO. Similarly for negative 
relief, x2 cannot be farther from the station than £2 by the condition 
A &2 >0. Hence the best ha , that is, the one that gives the lowest upper 
limit in inequality 71 ,would be the one that passed through the toe, 
£1, for a positive slope, or through the brink, £2 > for a negative slope. 
However, not all slopes contain such plane slopes in their family of 
permissible ha's. For example, on a long positive slope which steepens 
very near the toe it is generally not possible to draw an equivalent 
plane slope through the toe which lies above the slope at the toe. 
In such an example the steepest ha has its toe, Xi, closer to the station 
than &, and ft is reduced correspondingly. This in turn increases the 
upper limit on # in inequality 71 as is seen clearly in figure 15. This 
situation corresponds to the physical expectation that for two posi 
tive slopes with the same Ag'(x0), the one with the greater concen 
tration of volume near the toe will generally yield the greater Ag(a:0) 
because this volume lies in the region of greatest gradients. Similarly, 
it is not generally possible to draw ha through the brink of slopes 
which steepen very close to the brink. Fortunately, most slopes in 
the earth's surface tend to decrease in inclination near the toe and 
brink. We shall call a positive slope "concave at the toe" if it is 
possible to draw ha (xo) through the toe, &. A negative slope will be 
called "convex at the brink" if ha (xQ) can be drawn through the 
brink. Most natural slopes can be represented by models in these 
categories.

In figure 15 any vertical coordinate line can be viewed as represent 
ing a family of equivalent plane slopes, Ag/ (/8,r)= constant. The 
members of this family can be identified with reference to the coordi 
nate curves of ft and r. Thus, in the family of equivalent slopes for 
which Ag'=+0.35, that member which yields D=  0.07 is the 45° 
slope at a distance r=0.5 from the station. Any point vertically below 
the intersection r=0.5, #=45°, corresponds to a steeper equivalent 
slope farther from the station; points above the intersection correspond
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to equivalent slopes for which |8</450 , r<0.5. If we are given a positive 
slope, concave at the toe, whose height is twice its distance from the 
station (r=0.5) and for which Aq'(x0)=Q.35, we know from the pre-

A

vious discussion that 45° must be the best choice of ft. Hence for any
A

such slope D=  0.07 and Ag is 0.28. We can always choose |8*=90° 
which yields (fig. 15) D*=   0.14 and Ag*(xo)=0.21. Any other posi 
tive slope concave at the toe for which Ag'=0.35 which was farther

A

from the station (r>0.5) would have a larger ft and hence its upper
A

limit D would correspond to an ordinate between  0.07 and  0.14. 
More generally, any positive slope concave at the toe, whose height 
does not exceed twice its distance from the station, is represented by 
points in figure 15 between the curves r=0.5 and 0=90°. Inasmuch 
as the maximum difference in the ordinate between these curves is 
0.07, any of these slopes can be replaced by the equivalent cliff with 
an error not exceeding 7 percent. From the curve r=l, it is seen that 
any positive slope, concave at the toe, whose height does not exceed 
its distance from the station can be represented by the equivalent 
cliff with errors less than 3 percent; if the height is less than 50 percent 
of the distance from the station (fig. 15, r>2) the error is less than 
IK percent. The corresponding results for negative slopes, convex at 
the brink, are 4 percent for s>l and 1% percent for s>2 (fig. 16).

SOME CONDITIONS FOB VALIDITY OF THE JEFFREYS 
APPROXIMATION

From many of the numerical results presented (see fig. 2) the 
Jeffreys approximation often gives a satisfactory value for the topo 
graphic correction at the surface. However, it is extremely difficult to 
establish general conditions under which the approximation is valid 
and without them it cannot be applied with confidence. Consideration 
of the equivalent slopes provides some insight into this elusory 
problem.

It is seen from figure 15 that in the region between the curves 0=30° 
and r=0.05 the magnitude of D does not exceed about 0.03. Therefore, 
any positive slope, concave at the toe, whose height does not exceed 
20 times its distance from the station and whose maximum slope angle 
does not exceed 30°, can be represented by the Jeffreys approximation 
with errors not exceeding about 3 percent. (The actual condition on 
the slope angle is somewhat more general, namely that there exists a 
|8*<30°.) This description applies to a broad class of slopes of general 
interest, with positive anomalies ranging up to 65 percent. Similarly, 
the error would not exceed 13 percent for positive slopes, concave at 
the toe, even if their height were 100 times their distance from the 
station as long as the maximum slope angle (actually minimum ft*)
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were less than 45° (fig. 15). If a scarp occurred near the toe (so that 
the slope were not concave there), and it was necessary to select an
A

ha that extended to within 10~3 slope heights of the station, the linear 
approximation might contain substantial errors if A#' were large (fig. 
15).

From figure 16 it is seen that negative slopes, convex at the brink, 
can be approximated by the Jeffreys method to within 3 percent 
if their height does not exceed about three times their distance from 
the station and the maximum slope angle does not exceed about 45°. 
Virtually any slope, positive or negative, irrespective of slope at the 
toe or brink can be represented by the Jeffreys approximation within 
a few percent as long as Ag' does not exceed 0.15 and |8*<600 .

In general, it is seen (fig. 16) that for negative slopes the Jeffreys 
approximation is poor when A#' is large because the approximation 
becomes negatively infinite at the brink, where the actual heat flow 
approaches zero.

It should be noted that although the Jeffreys approximation 
might apply to the independent effects of slopes on either side of a 
station, it does not apply generally when the two coexist. Their 
interaction must be considered, as it must for any other slopes. It is 
also seen that small Ag' is not a sufficient condition for validity of 
the Jeffreys approximation unless coexisting slopes are of the same sign.

BRACKETING WITH EQUIVALENT PLANE SLOPES: 
NUMERICAL RESULTS

Inequality 71 can be applied to obtain rapid estimates of heat-flow 
anomalies on horizontal surfaces near irregular slopes. The calculation 
would normally be performed in three steps:

1. Compute Aqat,(x0) for the given slope hat> at the station (#0) 
(pl-2);

2. Select a steeper equivalent plane slope h* and a flatter one ha 
(pl-2);

3. Determine the limiting values of the anomaly Ag« and Ag0
(pl. 1).

These calculations can usually be facilitated by the use of plate 2, 
which provides a rapid means of estimating Ag', 0, or distance of the 
station from the slope (r or s) if any two are known. The curves 
below and to the left of the line 0=90° are used with the lower abscissal 
scale when working with distances from the toe of positive relief (r) 
or from the brink of negative relief (s). It is sometimes more convenient 
to consider distances from the brink of positive slopes (r+cot|8) or 
from the toe of negative slopes (s-fcot|8); in this case the upper right- 
hand curves and the upper abscissal scale of plate 2 apply. For many 
general slopes Ag' can be estimated rapidly (step 1) by approximating
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them as the sum of plane slopes whose contributions are determined 
from plate 2. Special care should be taken in approximating topog 
raphy close to the station.

It will often be possible to select values for ft* and ft by inspection, 
of the slope, and to obtain limiting values of the anomaly (step 3) 
directly from figures 15 and 16. However, when seeking the smallest 
bracketing intervals, it will usually be necessary to determine the 
coordinates of the toes of the bracketing slopes (hi and ha) to see 
if these slopes satisfy the requirement that they cross ha i> at only one 
point. It might be necessary to test this by drawing them on the 
topographic cross section.

A few simple numerical examples follow:
Example 1. Suppose the upper half of ha t> is a vertical cliff and 

the lower half is a 45° slope and that the heat-flow station, x0, lies 
one half of a slope height beyond the toe; that is, r 0.5 (fig. 17-4).

Step 1: To compute Aq^Xo) we break Aa6 into two plane slopes 
and add their individual contributions (pi. 2):

Ag; 6 (r=0.5)=Ag'(90°, r=2)+Ag'(45°, r=l)=0.16+0.22=0.38.

Step 2: The ordinate line A<z'=0.38 of plate 2 identifies the coor 
dinates (ft, r) of the family of plane slopes equivalent to hat> at x0 . We 
must select a slope flatter (ha) than ha i> and a slope steeper (hi), and 
each must intersect the sloping part of ha ^ only once. We have seen 
that the best choices are the most distant flatter slope and the closest 
steeper slope. In this example the best choice for the flatter slope, 
ha , is the one that passes through the toe of hab and hence has r=0.5. 
From plate 2 we find for r=0.5, Aff'=0.38 that £=51°. The best choice 
for the steeper slope, h*, in this example is the one through the brink. 
To find this slope the upper scale in plate 2 is used. We set r*+ 
cot/?*=l, the distance between XQ and the brink of h^, and find 

J3*=70°. r*=l-cot/3*=0.64.
Step 3: From plate 1:

A&(51°, 0.5)=0.29,

Ag*(70°, 0.64) =0.26, 
hence *

1.26<ga»(r=0.5)<1.29. (76)

In the present example we can obtain a result almost as good as 
inequality 76 directly from figure 15. From inspection of the slope 
(fig. 17 A) it is clear that we may choose:

2=45°, 
,8*=900 .
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FIGURE 17. Numerical examples of equivalent slopes.

By inequality 75 :

Z)*(90°, 0.38)<Z>(0.38)<Z?(55°, 0.38), 
and hence:

0, (77)

where inequality 77 is obtained by adding qf = 1.38 to the values of

D* and D read from figure 15.
In step 1 we found that the Jeffreys approximation gave 2/ a&=l-38 

which would not have been very satisfactory. However, in this 
example simply adding the independent exact solutions for the two
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parts of hal> gives a much better result. It can be taken directly from 
table 1 as:

A2(90°, r=2)+A2(45°, r=l)=0.115+0.178=0.293.

Example 2. If the point XQ were only 0.1 of the height of hab from 
the toe, then:

Step 1 (pi. 2): Ag'fl6(r=0.1)=Ag'(90°, r=0.2)+Ag'(45°, r=0.2)

=0.27+0.57=0.84.

Step 2: Choosing ha through the toe, r=0.1, Ag'=0.84 and plate 2 
gives:

0=50°. 

Choosing h*a through the brink, r*+cot/3*=0.6 and figure 17 gives:

/3*=69°, r*=0.60-cot/3*=0.22. 

Step 3: From plate 1:

Ag(50°,r=0.1)=0.68,
Ag*(69°,r=0.22)=0.52, 

that is:
1.52<&6(r=0.1)<1.68. (78)

The Jeffreys approximation yielded 1.84, and the sum of the exact 
solutions for the component slopes gives (pi. 1):

&6~l+Ag(90°, r=1.2)+Ag(45°, r=0.2)=l+0.18+0.46=1.64.

As in the previous example the sum of the independent exact 
solutions gives a satisfactory result.

Example 8. If the point XQ were one-half of a slope height behind 
the brink (fig. 175), we would have (table 2 or pi. 2):

Ag'a6(s=0.5) = Ag'(90, s=l)+Ag/ (45, s=l) = -0.538. (79)

Choosing h*a through the brink and ha through the toe from plate 2, 
we obtain:

/3*=78°, s*=0.5, £=55° s=l-cot 55°=0.30, 

and plate 1 yields:
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Hence:
0.44<gfl6(s=0.5)<0.47. (80)

From equation 79 we had for the Jeffreys approximation:

(81)

The sum of the anomalies from slope components independently 
yields (table 2) :

2a6~l+A2(90,s=l)+Ag(45,s=l)=0.34. (82)

Thus, in this example, the Jeffreys approximation is satisfactory 
whereas the sum of component contributions is not, a result easily 
anticipated from figure 16.

Example 4-   The case s=0.1 yields:

Ag' aft(s=0.1)=Ag'(90°, s=0.2)+Ag'(45°, s=0.2) = -2.16. 

From plate 2 we obtain:

J8*=84°,8*=0.1, 

J3=60°, s=0.600-cot60°=0.023 

and plate 1 and relation 71 yield:

0.11<ga6(s=0.1)<0.13. (83) 

In this example the Jeffreys approximation yields :

«i § =-1.16,

and the sum of exact solutions for slope components (pi. 2) :

, s=0.2)+Ag(45°, s=0.2)= -0.36.

The second two results are, of course, physically impossible as qa t> 
cannot be a negative quantity.

In the last example z0 was very close to the brink where, as we 
have seen, the left side of inequality 71 might not be rigorously 
correct. If we had chosen /3*=90° instead of 84°, the same lower 
limit to two significant figures in inequality 83 would have resulted. 
If, however, we are concerned about the lower limit given by inequality 
71 in cases like this, we can resort to simple geometric bracketing 
which yields:
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and from plate 1:
0.08<2fl6(s=0.1).

This result demonstrates that the lower limit of 0.11 in inequality 
83 cannot be much in error.

Example 5. As a final example we consider the topographic 
anomaly at the center of a symmetrical valley whose walls have the 
same shape as the figure of the previous examples. The floor is assumed 
to be flat over a distance equal to the valley's depth (fig. 17(7). We 
shall use the notation of inequality 44, referring to one valley wall 
as ha and the other as A6. From the first example (inequality 76):

A2a(z<>) =A&(a?o) =0.27 ± 0.02.

From plates 1 and 2 it is seen that the plane slope equivalent to ha at 
x0) which yields Ag=0.27, is 0=60°, r=0.59, that is:

Ag'(60°, r=0.59)=0.38, 

Ag(60°, r=0.59)=0.27=Aga(z0) ± 0.02=Ag6(zo) ± 0.02.

The effect of the ±0.02 on the interaction is of higher order. Hence, 
from plate 1:

Agfl (6)=Ag6(a) =Ag(60°, r=1.18)=0.12. 

Applying inequality 44:

0.27±0.02+0.27±0.02<Ag(zo)<(27±0.02+0.27+0.02)

[1+0.12+0.01+** *],0.54+0.04<Ag(zo)<0.61+0.04,
1.50<2(3b)<1.65. (84)

The circular valley of the same depth satisfies the conditions in 
relations 53 and 54a for an upper limit by geometric bracketing. The 
heat flow through its center is known to be 2.0 which is consistent 
with inequalities 84 and 54b.

APPROXIMATING WITH A SINGLE EQUIVALENT PLANE SLOPE, A a

The bracketing procedure of the foregoing examples is generally 
more elaborate than is warranted by most geothermal applications, 
although it is necessary to investigate the limitations of the method. 
By inspection of the real slope, an intermediate angle, J8, for an 
approximating equivalent slope generally can be selected. It should 
be weighted in favor of the part of the slope closer to the station, 
although the result is rather insensitive to the choice, as can be 
determined with a little experimentation. Once J3 is selected, the result
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can be read directly from figures 15 or 16 or the coordinate r or s of 
ha can be determined from plate 2 and the result obtained from plate 
1. In the foregoing examples, J3=60° would have led to results near 
the midpoint of the bracketing intervals, probably within a few 
percent of the exact values. (See numerical example, p. E63, eq 103.)

STATIONS ON GENTLY SLOPING SURFACES

Many of the results of the previous sections apply only to stations 
lying on geometrically horizontal surfaces, although these stations may 
be very close to steep and irregular slopes. The earth's surface cannot 
be considered geometrically horizontal over extended areas, but much 
of it (in the ocean basins at least) is inclined at angles of less than a 
degree or two. Although slope angles may change very rapidly near 
the toe and brink of topographic scarps, the distant transition to 
horizontalness is generally gradual. Hence, many heat-flow stations 
requiring topographic correction will lie on gently sloping surfaces 
adjacent to bold features. We must consider how to apply the fore 
going results to stations on such surfaces.

For this purpose we consider the heat flow at z=0 on the gently 
sloping part of the surface hab (fig. 18). We should like to establish 
conditions under which the heat-flow anomaly can be computed 
without appreciable error from the modified surface, ha , which con 
tains a horizontal part extending a distance 1/2 on both sides of the 
station.

FIGURE 18. General slope ha* is flattened in the neighborhood of the station 
(a?=0) by subtracting the increment 7i» to form the modified slope ha.
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We define ha by:
ha ==h/ait   /t&,

where:

<-5- (85) 

Hence :

> (86)

The difference between the heat-flow anomaly at x=0 on the sur 
face ha b and that on the (locally) flattened surface ha can be represented 
by the exact expression :

-r
J   00

+ I - v '/L ^  ^/J«fa+ I, WL ^  ^*d*

(87)

The seven integrals in the last expression on the right-hand side of 
equation 87 require discussion. The first integral represents the direct

effect of reference-plane temperatures in |a;K~ «n heat flow at the
£
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station (z=0). The second and fourth integrals taken together 
represent the effect of the contribution to reference-plane temperature

in x<   ~ of the sliver of height h6(  -). The second integral contains 
2t 2i

the first-order effect, and what will generally be an overestimation of 
the second-order effect of the sliver. The expression in brackets

in the fourth integral vanishes at x=  - and hence the integral
£

can be viewed as equivalent to the effects of subdued relief of height 

A 6(  -) at a distance of ^ from the station. The third and fifth integral
£ Zi

are analogous to the second and fourth. In the sixth and seventh 
integrals Ae is of the order of Ag6 which, for small hi,, is appreciably

different from zero only at x=-+ and x=  ̂   . At these points ha
2 2>

passes continuously to zero. Hence the last four integrals are of higher 
order, and they will generally be small relative to the first three

integrals when 2|/t 6(±-)|/~1 is small.
2i

Inasmuch as ^ 6 is assumed to be gently sloping and smooth, it will 

generally be possible to represent it and ea6 in \x\<^ by a few terms
Zi

of a Maclaurin's series.

(88)

where the derivatives are evaluated at x=0. When these expressions 
are substituted into the first three integrals of equation 87, only the 
even order derivatives of the reference-plane temperature contribute. 
We can replace A6 with hah as they are identical over the range of 
integration:

Aga6(0)-A<za(0) =- [A

(89)

Inasmuch as hj, is small, the mean gradient in the relief, (l+efl6), can 
be replaced by ga6 the heat flow (and gradient) at the surface. Hence:

(90)
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Equation 90 represents the "flattening error." It is the heat-flow 
error that can be expected where a gently sloping smooth part of a 
general two-dimensional surface, hab, is replaced by a horizontal plane 
segment of width I centered at the station. The relief beyond x=±l/2 
is adjusted upward or downward to eliminate discontinuities at x= 
±1/2. The error is independent of the local heat flow if the curvature 
is negligible, and independent of the lateral gradient of heat flow if 
the slope at the station is negligible. The curvature term takes the 
sign of the curvature. The slope term is positive if the heat flow is 
decreasing downslope and negative otherwise.

For numerical applications it is more convenient to have equation 
90 in finite form. Let /3(:r) denote the slope of the tangent to hai>(x) 
measured clockwise from negative x, and let:

T)_<7 (~ 1-} 9 I ¥ao I 9 I*g=- ĝa6(0) V 2A

Then equation 90 can be written:

ga6(0) ~0ga(0) =^[tanA/3+2Sg tan/3(0)]. (91)

If the change in slope (A/3) over the flattened interval is less than 2°, 
the curvature term will not contribute more than 1 percent to the 
error; if it is less than 5°, the contribution will be less than about 2% 
percent. In general 8q, the relative change in heat flow across the 
flattened interval, will not be known, but inspection of the slope will 
normally permit an estimate of its order of magnitude. If 8q is 50 
percent, a rather extreme case, the second term will contribute about 
1 percent to the error if the slope at the station is 2°. If 8q is 20 percent, 
a 5° slope will contribute 1 percent. 

Equation 91 probably should not be used for A/3 and /30 much larger

than 5° or 6'° because of the condition, 2A,6 (±~)£~ 1«1, re-

quired to neglect the last four integrals in equation 87. When 8q is 

large, qa i>(x) is likely to have considerable curvature in |x|<~- It is
Zi

seen from equation 89 that the lowest order term containing curvature 
of eai>(x) occurs as a product with h"'. Thus, if A/3 is very small, sub 
stantial curvature in ga6 can probably be tolerated in equation 91. 
If not, it is probably best to restrict its application to cases in 
which q8 does not exceed about 25 percent. This will include most 
cases of interest.

298-334
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NUMERICAL EXAMPLE

To illustrate the use of the flattening procedure with the approxi 
mating schemes of the preceding sections, we consider the monocline 
of Jaeger and Sass (1963, eq 11 with a 1.01). The heat flow will be 
estimated at two points: (1) In the vicinity of the toe at u =   1.5 
(fig. 19), and (2) in the vicinity of the brink at ^=+0.55 (fig. 20).

Point 1: Station at u   1.5 (fig. 19). The slope is flattened from 
M=   1.3 to u=  1.7 in which interval A/3=1.6°, (8 0 =4.5°, and Sq is 
obviously small. (Its actual value is 0.02.)

The Jeffreys approximation of the effect of relief to the left and 
right of the flattened interval is obtained by numerical integration, 
for example, by adding effects of many small plane slopes.

;= -0.035 (92)

Equivalent slopes for the relief to the left of the station are (pis. 1 
and 2) :

=12.5°, r=0.24), 

/3=38°, r=0.90).

0.8 -1.6 -2.0

FIGURE 19. Numerical example 1, stations on gently sloping surfaces. Monocline 
of Jaeger and Sass with a = 1.01 (lower scale) and its slope angle (upper scale).
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Hence:
Ag*(38°, r=0.9)<Aga<A£(12.5°, r=0.24)

0.18<Aga<0.21. (93)

It is known that (fig. 15) :

A2;=Ag6 = -0.035. (94) 

For the estimation of interaction, Ag> can be represented by:

A2(j8=2°, «=1.33). 

Applying inequality 49a, b:

0.21-0.035>Ag>0.18[l-0,02]-0.035[l+0.15]

Ag=0.155±0.02. (95)

The exact result is 0.161, and the Jeffreys approximation is 0.175. 
The good agreement between the two could have been anticipated 
from figure 15; the relief to the left is concave at the toe and the 
interaction is small.

Point 2: Station at u=+0.55 (fig. 20). The slope is flattened from 
14=0.50 to ^=0.60 (that is, 1=0.10) (fig. 20). In this interval 
A,3=  3.1°, /30=3.4° and 8q is large, as this is the region in which 
q(x) has its largest gradients. (Its actual value is about 25 percent.) 
The contribution of the slope term to the flattening error (eq 91) is 
+0.01gf (x0) and the curvature term contributes   0. Ol5q(x0) . As we 
shall see, q(x0)~Q.5, and hence the flattening error amounts to only a 
few tenths of 1 percent of the regional heat flow. The results for this 
example are:

exact solution: Ag(x0)=  0.58. (96a) 

Jeffreys approximation: Ag/ (x0) =  0.675. (96b)

A^=-0.69. (96c)

(96d)

(96e)

(96f)

We first assume that the information in equations 96a-d is not 
available and see what can be done by simple geometric bracketing.

(0=2.3°.
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-0.4 -0.8

-0.6

-0.4 -

-0.2 -

-0.8

FIGURE 20. Numerical example 2, stations on gently sloping surfaces.

The effect of relief to the right of the station is overestimated by that 
of the plane slope ABC and underestimated by the slope DE (fig. 20). 
Thus:

A2 (j8=500 , *=0.28)>A20>A2(45°,*=0.051),

and plate 1 yields:
-0.50>Ag6>-0.69. (97)

The relief to the left is positive, and it is overestimated by the 
plane slope tangent to the relief at 1/2,
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and from plate 1 :
+0.02>Aga>0. (98)

From inequality 49a,b, the interaction will not exceed  0.01. Hence:

-0.48>Ag(z0)>-0.70. (99)

In practice, one would be more likely to approximate the relief 
with plane slopes rather than take the extreme bracketing configura 
tions. This method would generally lead to an estimate near the 
midpoint of inequality 99 and within a few percent of the exact value 
(eq 96a), considerably better than the Jeffreys approximation without 
recourse to numerical integration.

If the Jeffreys approximation, equation 96b, c, and d, is computed, 
the method of equivalent slopes can be applied. The present example 
illustrates a complication because, although the curvature is negative 
near the station, the relief to its right is not convex at the brink 
because of the long gently sloping toe. It is not possible to obtain the

upper limit, Ag , by passing h through the brink x=   ~- We therefore
£

replace the part of the slope below   V=0.3 with the horizontal sur 
face GH (fig. 20). By the theorem on geometric bracketing the modified 
surface will cause an algebraically larger anomaly than the true 
surface, and h for the modified surface will yield the upper limit 
required. Ag &' for the modified surface is  0.65. We select #*=60° 
and from plates 1 and 2 obtain:

Ag(32°,s=0.06)>Ag &>Ag*(60°,s=0.23)

-0.54>A2&>-0.61. (100) 

From figure 16 it is known that:

(101)

Adding equation 101 to inequality 100 and subtracting 0.01 (an 
upper limit to the interaction) from the right-hand side yields :

-0.525>Ag(z0)>-0.605. (102)

This is to be compared with the exact result,  0.58 (eq 96a), and the 
Jeffreys approximation,  0.675 (eq 96b).

The bracketing procedure has been somewhat belabored for pur 
poses of illustration, but in practice the calculation is much simpler. 
The upper part of the right-hand relief (h b) has an average slope of 
about 45°. Approximating h b by the equivalent 45° slope, ~h b , we 
obtain directly from figure 16:

-0.69) = -0.69+0.11 = -0.58. (103)
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Adding Ag & (eq. 101) and subtracting 0.005 for interaction yields:

-0.57, (104)

which agrees well with the exact result (eq. 96a). It is seen from figure 
16 that if 60° had been chosen instead of 45°, for the approximating 
equivalent slope, the corresponding result would have been 3 percent 
lower; a 30° equivalent slope would have made it only 3 percent 
higher.

VARIATION OF THE TOPOGRAPHIC ANOMALY 
WITH DEPTH

To this point the discussion has been concerned only with the flux 
of heat across the surface and therefore has focused only on the 
limiting value of the thermal gradient at zero depth (2=0). Even in 
oceanic measurements of geothermal flux, however, temperature 
gradients are determined from observations to finite depths (1-10 m). 
It is necessary to determine the conditions under which topographic 
anomalies computed for the surface can be applied to gradients 
determined beneath it without appreciable error, that is, conditions 
under which the gradient anomaly may be treated as superficial.

It is probably worth noting at the outset that inasmuch as the 
temperature satisfies Laplace's equation, and the solid surface is 
isothermal, the second derivative of temperature must vanish in 
every direction at the surface, wherever the surface has a continuous 
tangent. Hence:

and, in general, the heat flow is not changing with depth immediately 
below the surface. At reentrant corners where the surface heat flow 
is infinite, the vertical gradient of heat flow is negatively infinite 
so that finite heat flow occurs at finite depths.

To investigate depth variations of heat flow analytically we rewrite 
equation 17 in the form of equation 24.

(106) 
rj-co (X XQ)-

1  ** "  **()where: x=   -
2

1 __v-2

(107a)
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3 ' 5 "^ (107b)

(107c)

Equation 106 is an exact expression for the effect of any two- 
dimensional topographic surface, h(x), on the vertical gradient at 
.the point (x0 ,z). Although e(x) is unknown, its physical interpretation 
is clear; it is the mean anomalous gradient in the relief at x.

Inspection of the form of the function <£ (fig. 21) and equation 106 
points up a fundamental problem of attempting regionally meaningful 
measurements of thermal gradient at or near the surface. The function

i.o

0.8

0.6

or * 0.4

0.2 

+0.125

-0.125      

-0.2
0.577 1.23

FIGURE 21. The factors $ and * for depth dependence of the integrand in ex 
pressions for the gradient anomaly.
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<£ greatly diminishes effects of topographic features whose horizontal 
distance from the station, (X XQ), is not large relative to the depth of 
observation, that is, relief for which x is not large. It is these features 
specifically that can have a very great effect on the gradient at the 
surface because of the inverse square growth of the fraction in the 
integrand of equation 106. As z approaches the surface <£ approaches 
unity for all x, and very small features very close to the station can 
have very large effects on the gradients. We shall investigate these 
effects.

For the general topography illustrated in figure 22, equation 106 
can be rewritten :

***'

The points xt (fig. 22) are selected in such a way that h(x) does not 
change sign in any subinterval.

Inasmuch as the topographic anomaly cannot reverse the sign of 
the gradient, (1+e) is positive over any finite interval. Therefore, the 
fractions in the integrands of equation 108 do not change sign, and 
the mean value theorem can be applied to each integral.

-
(x x0) 2

i-
2 * * *> (109)

where:

and:

FIGURE 22. Greneral two-dimensional relief, h(x), and the notation for equation 108.
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The barred x' s are the ones that give the appropriate mean value 
of <£ in each integral.

The form of e(x) in each interval of equation 109 depends upon the 
form of h(x) in every other interval because of interaction between the 
topographic elements. Hence a single term of equation 109 cannot be 
identified with the complete effect of topography in its interval 
unless the interval contains all the nonvanishing topography. Some 
special cases of equation 109 will be discussed.

CASE 1, ALL TOPOGRAPHY OF ONE SIGN: GENERAL

(h(x) > 0 or h(x) < 0, oo>z>   oo)

In this case equation 109 can be written :

, _,.
. (110)2

7T J_ m (X   XQ)

The integral is an exact expression for the topographic anomaly at 
the surface. By equation 107a, 3>|<J, and hence:

|Ag(zo,0)|>|Ag(z0,2)|,z>0. (HI)

Inequality 111 can be stated as a theorem: IJ the topographic 
relief is of one sign at the station (x0) , then the heat-flow anomaly caused 
by this relief at (x0, z) attains its greatest magnitude at the surface z=0.

The theorem applies to the Jeffreys approximation as well as to 
the exact result. However, it does not apply in general to the dis 
crepancy (D(x0,z)) between the two, as e(x) can change sign where 
h(x) does not. Hence, it is quite possible for the error in the Jeffreys 
approximation to be greater at depth than at the surface. It can be 
shown that the theorem applies also to the transient case if the change 
of h (x) with time is of the same sign as h (or is zero).

All the topography nonnegative (h(x)>0) could correspond to a 
station at the edge of a plane or beyond the toe of a scarp or a range 
of ridges. It could also represent a station in a thinly sedimented 
depression on a rocky ocean bottom. All the topography nonpositive 
may represent a station near the edge of a plateau or shelf, or perhaps 
one on the crest of ripple marks.

CASE 2, RELIEF VANISHES NEAR THE STATION AND IS OF 
ONE SIGN ELSEWHERE

a:i; h(x) >0 or h(x) <0,

In this case:
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Exclusive of the $'s, the right side of equation 112 represents the 
exact effect of the topography on heat flow at (x0 , 0) even though 
the complete effects of each of the two elements of the topography 
cannot be identified individually with each of the terms. Without 
loss of generality we assume that the relief on positive x is not farther 
from x0 than that on negative x, that is:

X x <x; (113)

If the depth, z, of the observation point is less than the distance 
\x\  x0 to the nearest relief:

and from equation 1 12 :

or:
. .
(U5)

In oceanic applications the gradient is often determined from the 
difference in two measured temperatures; one taken near the sea 
bottom, and the other at some finite depth (z) beneath it. Similarly, 
on the continents, the mean gradient is sometimes estimated from 
the differences between the local mean air temperature and the 
temperature at the bottom of a borehole. The departure of the mean 
gradient (or mean heat flow), determined in this way, from the 
regional value will be referred to as Aq(x0 , z).

^ f*z
}=-

ZJo

, z')dz'

Imposing conditions 113 and 114 we can write:

Hence:

where *(x)=x fxf^d^x^ tan- 1---"] (117a)
J o 1 ~r S |_ X X_|
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The function SF is illustrated by the dashed curve in figure 21.
Thus, for any topographic configuration h(x), of one sign, whose 

distance from the station \Xi   x0 \ exceeds the depth of measurement 
(z), we have:

1. The ratio of the gradient anomaly at depth s to that at the surface 

is greater than $(      - j (inequality 115).

2. The ratio of the anomaly in the mean gradient (between the sur 
face and depth z) to the gradient anomaly at the surface is greater

than ^(^7 ) (inecluality 116 and e(l 117a> b)-

If z is 10 percent of the distance from the toe (or brink) of the 
nearest relief (xi=10), the topographic anomaly at depth z differs by 
less than 3 percent from the value at the surface, and the mean value 
of the anomaly from the surface to depth z is within 0.7 percent of 
the surface value. If z is 20 percent of the distance to the nearest 
relief (xi = 5), the gradient anomaly varies between the surface and 
depth z by less than 11 percent, but its mean differs from the surface 
value by less than 2.6 percent. The function <£ falls rapidly for x<^5 
and hence there is no assurance that the surface correction is a good 
approximation to the correction applicable at depth z for relief at a 
distance less than four or five times the depth. However, when xi ig 
only 2, the function ^ is still 0.86, and hence the mean gradient 
anomaly in (0, z) can be represented reasonably well by the surface 
correction for relief that extends as close to the station as twice the 
depth.

CASE 3, BELIEF NEAR THE STATION IS OF ONE SIGN AND IT 
VANISHES ELSEWHERE (h(x) >0 or h(x) <0, xl <x<x\; h(z)=0, x>Xi, z<zi')

In this case:

Denoting by |$w | the greatest value of |$| in (xi,x{) we obtain:

Without loss of generality, we assume that the most distant relief 
occurs at Xi. If (XI XQ) is more than 1.233 then it is seen from figure 21 
that:

|*J=*(Xi)>0.125,Xi>1.23. (120)
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The effect of relief extending outward to five times the depth (%i=5) 
cannot exceed 88 percent of the surface value (fig. 21). At a depth 
equal to half the maximum distance to the relief (xi=2), the topo 
graphic correction cannot exceed 48 percent of the surface value.

Those parts of the relief whose horizontal distance from the station 
is less than the depth cause gradient anomalies of sign opposite that 
of the surface value. Integration over the changing sign of $ will 
generally result in much more rapid depth decay of the close-in topo 
graphic anomaly than is indicated in th,e limits imposed by inequality 
120. Consider, for example, the case in which the effective relief 
(&[l + e|), equation 118, decreases in proportion to the square of its 
distance as the station is approached. If Xi= x'1 =2z, integration of 
equation 106 yields. :

..
, 0)

This 9 percent is to be compared with the 48 percent given by in 
equality 120. If more relief occurs closer to the station, the reduction 
of the anomaly with depth is even greater. If h(\-\-e) is uniform 
from \x\=2z to |a:|=0.1z, the anomaly at depth is only 3 percent of 
the value applicable at the surface (and of opposite sign). Thus, the 
effect of relief extending outward a distance 2z from the station can 
generally be expected to be an order of magnitude less at depth z than 
at the surface.

If xi<0.577, then it is again true that <l» TO | = |$(xi)| and inequality 
119 can be written (equation 107):

z)
0)

, X!<0.577. (121)

Thus, at depths an order of magnitude greater than the width of a 
close-in feature of one sign, the topographic anomaly is reduced at 
least two orders of magnitude (and changed in sign).

CASE 4, TOPOGRAPHY OF BOTH SIGNS: GENERAL

If h(x) is composed of m positive parts in the intervals (x i ,xi+i),i=l, 
2, 3, * * *m, and n negative parts in the intervals (xj,xi+i), .7 = 1, 2, 
3 * * * n, then equation 109 can be written:

(122)

where the integration is performed in the direction of positive x. As 
before, if the $'s were set equal to unity, the series would give the



TOPOGRAPHY AND SUPERFICIAL THERMAL GRADIENTS E71

exact value of Aq(x0,0). However, unlike the former cases, Aq(aj0,s) 
cannot now be expressed simply in terms of Aq(z0 ,0) and bracketing 
values of $, because the theorem stated from 111 no longer applies. 
For example, if the positive terms in equation 122 (the "i-terms") 
represent a very large feature far from the station, and the negative 
terms, a very small feature close to the station, they might cancel at 
the surface to give Ag(x0 ,0) = 0. As z increased, the influence of the 
negative terms (<fy, eq 122) would diminish very rapidly and Ag(z0,3) 
would become strongly positive.

If the interaction between the positive and negative elements of 
the topography is neglected, the anomaly at any depth can be esti 
mated by considering the effects of each separately.

CASE 5, VARIATION OF THE FLATTENING ERROR WITH DEPTH

In the previous section it was shown that if the topography was 
gently sloping and smooth in the vicinity of a heat-flow station, 
in the sense that the surface and the heat flow through it could be 
represented by a few terms of Maclaurin's series, then the topographic 
anomaly at the surface could be computed by flattening the slope 
in the vicinity of the station. By introducing the factor $ into the 
integrands of equation 87 it can be shown that the individual terms 
of the flattening error (eq 91) would be smaller in magnitude at z^>0 
than at the surface. If the interval is flattened for a distance 1/2 
that exceeds five times the depth of the observation, the variation 
with depth of the last four integrals of equation 91 will generally be 
small.

DISCUSSION

It is now possible to return to the problem posed at the beginning 
of this section and define "superficial gradient" in terms of the top 
ographic relief. We can refer to a gradient measurement at (or to) 
any depth X as superficial if the applicable topographic anomaly is 
approximated1 well by the value applicable at the surface. If we now 
denote by xn the horizontal distance from the station to the nearest 
point of the relief (flattened by the method of p. E56-E59 if necessary), 
then if the relief is of one sign, (a) gradient measurements at depth X

are superficial if  ^0.2, and (b) measurements of mean gradient
xn

between 0 and X are superficial if  <0.5. If xf represents the distance
xn

to the farthest point of the relief, then (c) a gradient measurement at X

is not superficial if   >0.5. These criteria are based upon the per- 
xf

centage variation of the topographic anomaly with depth, and they 
are independent of the height (#) of the topographic relief. In this



E72 EXPERIMENTAL AND THEORETICAL GEOPHYSICS

sense, the results (tables 1, 2) apply to depths (X) of 2 or 3 meters 
at distances (xn) of only 5-10 meters from the toe or brink, even 
though,the height of the slope (77) might be several kilometers. It

TT

has been shown that where   is large, the Jeffreys approximation
Xn

might not be valid. Therefore it is worth distinguishing between
\ TT X 77

two cases: (1)   small,   large and (2)   small,   not large.
xn xn xn xn

The validity of the superficial correction is assured by the first 
condition in each case. In the second case the Jeffreys approximation 
will also apply, whereas in the first it might not. Most geothermal 
observations in boreholes on the continents extend to a depth, X, 
of the same order of magnitude as the topographic relief, H, even in 
rugged terrain. Hence, where the first condition is met, such observa 
tions will fall in case 2 and the Jeffreys approximation will usually 
apply to them. In geothermal observations at sea, however, the mea 
surement depth X is normally only a few meters, and this may be less 
than the distance to nearby relief and very small relative to its height 
(H} (case I). As an extreme example of case I, consider the gradient 
anomaly at the tip of a 2-meter probe 20 meters from a cliff 2 kilo 
meters high. Its value would be within 3 percent of the anomaly at 
the surface, that is, within 3 percent of 2.QQ (table 1) or about 0.08Q. 
The error in the average gradient from neglecting this difference 
would be less than 1% percent of Q. In this extreme example the error 
in applying the exact solution, valid at the surface, would be less by 
a factor of 2,000 than the error in applying the Jeffreys approximation 
with depth considered. As an illustration of case 2, steady-state 
topographic corrections throughout a 1,000-foot borehole can be 
computed from solutions valid at the surface if the (two-dimensional) 
topographic relief is more than a few thousand feet from the station. 
Under such circumstances the Jeffreys approximation and the exact 
solution would give comparable results unless the relief were very 
great. The topographic anomaly in the upper hundred feet of the hole 
could, of course, be considered superficial for relief extending to within 
a few hundred feet. For relief of one sign at any distance, the surface 
correction will provide an upper limit.

Although not directly amenable to treatment by present methods,

cases other than the superficial ones (- small) should be mentioned in 

passing. It is seen from equation 106 and figure 21 that topographic ele 

ments for which -=1 have little or no direct effect on the gradient at 
x

depth z irrespective of their height. Features for which -<O contribute
wu

to the topographic anomaly approximately as their height tunes the in-
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verse square of the measurement depth. If their height does not exceed 
the depth (the situation in all but the most rugged topography) their 
contribution is not large and can probably be estimated by the Jeffreys 
method. Large-scale topographic features that approach the station 
to within a fraction of the measurement depth cannot be treated gen 
erally with results for the superficial case although these results 
often provide useful limits. In such cases the doublet (or dipole) 
method of Jaeger and Sass (1963) might be used if a satisfactory repre 
sentation of the surface can be obtained without an unwarranted 
effort. The depth variation (important to these cases) of the topo 
graphic anomaly can then be computed directly.

OCEAN-BOTTOM GRADIENT MEASUREMENTS

In oceanic geothermal studies the relief near a station is unknown 
because of limitations in present-day echo-sounding techniques. Even 
if the bottom were a horizontal plane, the echogram would generally 
be uncertain by a few meters at abyssal depths because of limits of 
instrumental precision, uncertainties in the sound velocity, and verti 
cal movements of the ship on the open sea (Luskin and others, 1954; 
Krause and Menard, 1965; Heezen and others, 1959). If the sea bottom 
were irregular, uncertainties of elevation could be two orders of 
magnitude greater because the source of the echo is indeterminate 
within a circle of finite radius beneath the sonic source. For most in 
struments currently in use, the diameter of the circle is of the same 
order of magnitude as the water depth (kilometers) and reflections 
from positive features, generally not beneath the ship, tend to domi 
nate the echogram (Krause, 1962). The net result is that the echogram 
generally yields a smoothed representation of the sea floor; if bold 
small-scale features exist, they are subdued or masked completely.

For example, it can be shown that the maximum relief, d, indicated 
by first arrivals on an echogram from parallel ridges separated by a 
distance, co, is given approximately by:

where E is the water depth. Thus features a few 10's of meters wide in 
water a few kilometers deep would be masked; their indicated relief 
would be only a few centimeters. An echogram relief of 1 meter would 
be indicated in 4 kilometers of water by ridges 180 meters apart; the 
actual relief could be 10-100 times as great. Such a feature would 
subtend an angle of less than 3° at the source, and probably would not 
be resolved even by high resolution techniques (Cohen, 1959).

We shall neglect topographic variations in the direction normal to 
the echo traverse, and investigate the magnitude of the topographic
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disturbance that could be caused by undetected relief. (This problem 
has been considered from a slightly different point of view in a recent 
paper by Birch, 1967.)

If the change in elevation of the bottom is uncertain by dh, then 
uncertainties in sea-bottom relief at distances beyond ndh from the 
station could result in uncertainties in the topographic correction of 
roughly 2Ag(n), where Ag represents the anomaly due to a plane slope 
at n=r or n=s depending upon the sign of the error. (Such a slope 
may be viewed as the equivalent slope of very general configurations.) 
The factor 2 takes care of the case in which the error, 5^, is of the same 
sign on both sides of the station; where n is small the interaction should 
be considered (eq. 44, 46). As this is the worst case for the present 
discussion it will not be necessary to consider relief of both signs. 
From tables 1 and 2 it is seen that undetected relief at distances be 
yond 55^ could cause uncertainties of 10 percent or so for positive 
relief, and 15 percent for negative relief. The uncertainty could be 
twice as great (20 or 30 percent) for n 2. Strictly speaking, these 
errors apply to the anomaly at the surface, 2=0. However, it follows 
from equation 116 that if n8h^>2\, the correction applicable to the 
mean gradient between 2=0 and 2=X must be close to the surface 
value (within 86 percent).

Very small amounts of undetected relief very close to the station 
can cause large anomalies in the surface gradient, but these decrease 
rapidly with depth. It has been shown that the change in the topo 
graphic anomaly over the depth X will be of. the same general magni 
tude as the anomaly applicable at the surface if the relief is within 
2X of the station and is all of one sign. Hence, if the temperature 
profile in 0<2<X is linear, it can be reasonably assumed that signifi 
cant relief does not occur on such a scale. If it is not, the mean gradient 
in (0,X) can contain an error from such relief equal to a substantial 
fraction of the observed change in gradient with depth.

If we rely upon curvature of the temperature profile as an indicator 
of undetected relief out to a distance 2X, and apply the analysis of 
the preceding paragraph for relief beyond ndh, then all relief can be 
accounted for if:

\e^8h. (124)

Thus, if the probe length, X, is approximately equal to 5^ (case n=2), 
the anomaly due to undetected (two-dimensional) relief could be 
roughly 20 percent plus a sizable fraction (Xo-J0 of the observed 
change in heat flow over the length of the probe. For probes a few 
meters long the required 8h (~2 m) is probably approached by modern 
sounding techniques only where the sea bottom appears almost
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featureless in the echogram. For irregular sea bottoms where dh can 
be several 10's of meters, equation 124 requires values of n on the 
order of 0.1 for probes a few meters long. Under these conditions 
undetected relief could easily cause errors of 50 or 100 percent (tables 
1, 2 and eq 44 and 46). Such large errors from unde tec table relief 
will often, but not always, be accompanied by a marked variation 
in the heat flow with depth, and curvature will flag the data as 
suspect. However, it is seen from tables 1 and 2 that if X is 2 meters 
and the relief is beyond 10 meters (5X) with an angle of 15 C and a 
height of a few 10's of meters, errors of 35-50 percent could occur 
with no detectable curvature in the temperature profile. It should 
be noted that these are the errors that could remain after the observ 
able relief was corrected for. The corresponding three-dimensional 
results (with radial symmetry) might be greater by a factor of about 
\%. It is seen from equation 124 that one cannot be confident 
undetectable relief is causing errors less than 10 or 15 percent unless 
the probe length, X, is at least 1%, times the uncertainty in local 
relief (case n=5) and the curvature of the temperature profile is 
negligible.

Although errors such as these may not be common, the possibility 
of their occurrence cannot be generally discarded until more is learned 
of the microrelief of the sea floor. These uncertainties are alleviated 
somewhat by bottom photography, and the situation will no doubt 
improve with the further development of high resolution sounding 
techniques (Cohen, 1959). The results emphasize the desirability of 
using longer thermal probes (such as the 10-m device developed at 
Lament Geol. Observatory) and for using several temperature sensors 
to detect curvature. If we discarded oceanic heat-flow data for which 
it could not be established that the curvature was less than 50 percent, 
we would probably be left with less than half of the world's heat-flow 
observations. At present, the best assurance against undetected 
topographic disturbances is probably the agreement of closely spaced 
measurements (Reitzel, 1963; Lachenbruch and Marshall, 1966).

It has been pointed out (Lachenbruch and Marshall, 1966; Langseth 
and others, 1966) that lateral heat flow from small-scale roughness 
can result in a systematic decrease in the mean regional gradient. 
Where such roughness has a wave length less than the probe length, 
X, these effects can probably be identified as surficial ones if several 
temperature sensors are employed.

TIME DEPENDENCE AND OTHER EFFECTS

It has been pointed out by Birch (1950) that the finite times 
elapsed during and since the evolution of topography can have 
appreciable effects on the geothermal terrain correction. He presented

298-334 O 69   6
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a comprehensive theory, based on the Jeffreys approximation, to 
account for the disturbance to temperature at any depth beneath 
a general topographic surface in terms of rates of uplift and erosion. 
The two-dimensional case of Birch's theory was simplified by Clark 
(1957). The present paper concerns corrections to superficial gradient 
measurements. As we have seen, this is primarily a problem of ac 
counting for close-in topography which can probably be considered 
to be in thermal equilibrium in most cases. However, an approximate 
theory of the transient effect will be considered to place the foregoing 
discussion in a time context. Where detailed transient corrections 
for distant topography seem warranted, the theory of Birch should 
be used.

The effects of any slope (positive or negative) are identified with 
the effects of its equivalent cliff. The cliff, at a distance x from the 
station, is assumed to have evolved instantaneously at time t=Q, and 
from that time onward its effect on the reference-plane temperature 
is taken as the value given by the Jeffreys approximation. The ap 
proach to equilibrium of the surface heat-flow anomaly at x is described 
by (Lachenbruch, 1957, eq. 14 replacing x with   x):

, t) r . ,\=-\TTwrfcJ (125)

where a represents thermal diffusivity. Selected results from equation 
125 are presented in table 6 for unconsolidated sediments (a= 0.0025 
cnr'sec"1) and rock (a= 0.0125 cnr'sec" 1). For topographic features 
whose height and distance is small relative to the sediment thickness, 
the value for sediment is probably more realistic. Larger, more 
distant features are probably represented better by the column 
headed "Rock".

TABLE 6. Time, in years, for indicated percent approach cf surface heat flow to 
equilibrium after generation of a cliff at distance x

Distance a

0.01   
0.1    ..
0.5   
1.0    
5  ..... ...
10...   ..
50.. .....

90 percent 
  (km)

Rock

1 8 V1O2

     1.8X10*
     4.5X105

    . 4.5X10'

     4.5X109

Sediment

9. 0X102 
9. OXIO4 
2. 3X10« 
9. 0X106 
2. 3X108 
9. 1X108 
2.3X10W

50 percent

Rock

5.2 
5. 2X102 
1.3X10* 
5. 2X10* 
1.3X106 
5. 2X106 
1. 3X108

Sediment

26 
2. 6X103 
6. 5X10* 
2. 6X105 
6. 5X108 
2. 6X107 
6. 5X108

10 percent

Rock

0.7 
68 
1.7X10" 
6. 8X103 
1. 7XW 
6. 8XW 
1. 7XHF

Sediment

0.3 
3. 4X102 
8. 5X103 
3. 4X10* 
8. 5X105 
3. 4X108 
8. 5X107

Ag for 1-km cliff, t = °°
0=+90° 
(z=r)

+2.9 
+.86 
+.32 
+.20 
+.05 
+.03 
+.006

(3= -90° 
(z=«)

-0.99 
-.92 
-.64 
-.41 
-.08 
-.04 
-. OOf

From the second line of table 6 it is seen that an open pit or mine 
dump made in this century would not affect the surface heat flow in 
a borehole only 100 meters away. By inequality 111, the result applies 
to gradients throughout the borehole. Fairly uniform relief, ap-
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preaching to within about 1 kilometer of the station, can be described 
by the equilibrium theory if it has not changed much since early 
Pliocene time if the sediments are thick, or early Pleistocene if they 
are thin. The latter alternative would apply, for example, to the 
walls of an oceanic trench for stations on the floor. A substantial 
fraction of the effect of slopes forming 10 million years ago would be 
felt at stations 5 or 10 kilometers away. It is seen from the last column 
of table 6 that effects of such slopes would generally be small.

The results of the previous section are based on the assumption that 
the earth's thermal properties are uniform. Over much of the ocean 
basins a layer of unconsolidated sediments about 1-kilometer thick 
overlies more consolidated material of contrasting properties. Where 
the topographic features are composed of unconsolidated sediments 
and their distance from the station is not large relative to the thickness 
of the sedimentary layer, the homogeneous model probably 
applies reasonably well. Where the sedimentary layer is thin relative 
to the relief, the homogeneous model should again be applicable. 
Lateral inhomogeneities in thermal properties can cause appreciable 
heat-flow anomalies, and they must be considered separately (Von 
Herzen and Uyeda, 1963; Lachenbruch and Marshall, 1966). One 
such problem is considered briefly below.

For convenience it has been assumed that the topographic surface 
is isothermal. If the temperature of the surface decreases linearly with 
elevation with gradient, G' ', then the topographic anomaly would be 
given by:

/nr _ ri>
r-M- (126)

For terrain above sea level, approximations to G' are found to range 
from about 3° to 9°Cr per kilometer, and this value is often 10-50 
percent of G. Such values of G' result in substantial reductions of the 
topographic anomaly. At abyssal depths in the ocean we normally 
have G'/G~W~*3 , as G' is of the order of the adiabatic gradient in sea 
water, and the assumption that the surface is isothermal is realistic.

BURIED BEDROCK SLOPE

Equation 126 suggests an additional application of the results 
for plane slopes. Suppose a bedrock surface dips under sedimentary 
material of conductivity KI and there is no topographic expression 
at the surface, as illustrated in figure 23. If the conductivity of the 
rock is K, then the gradient GI in the sediment at points distant from 
the slope is:

K



E78 EXPERIMENTAL AND THEORETICAL GEOPHYSICS

7/77/7777°

FIGURE 23.   Model of the downfaulted bedrock pediment.

As an approximation, we assume that the gradient GI obtains through 
out the sediment above the bedrock surface. Replacing G' by GI in 
equation 126 yields:

Afete, 0)sl- Affte, 0), (127)

where Ag 6 is the heat-flow anomaly caused by the buried bedrock 
topography at points on the surface behind the brink (fig. 23, AB) 
and at the buried interface (fig. 23, BCD).

If the conductivity of the bedrock is approximately twice that of 
the sediment (a common situation), the lower curves in figure 3 give 
the negative of the anomaly along AB (fig. 23) , and the upper curves 
of figure 3 give the negative of the anomaly along the interface CD 
(fig. 23).

This model describes a common situation in the Basin and Range 
province of the Western United States, where bedrock pediment sur 
faces are downfaulted on the basin side and the depression is subse 
quently filled with alluvium. The results are useful in the interpreta 
tion of geothermal data from boreholes in such areas.

SUMMARY

The effect of topographic relief on heat flux through the surface 
can be determined exactly for a semi-infinite medium bounded by a 
plane slope (two horizontal half planes joined by an inclined plane 
segment) where the vertical heat flow is uniform at great depth, and 
the surface temperature varies linearly with elevation. Analytical 
results are given for vertical flux across both the horizontal and

7Tsloping portions of the surface for slope angles of -, n an even integer
71

greater than or equal to 2 (eq 12 and 14) and for n=3 (eq 13). They 
form the basis for graphs and charts that yield results for all slope
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angles between 0 and -. The solution is a generalization of the work
L

of Castoldi (1952) who considered the vertical cliff, n=2. These 
results can be used in various ways to estimate the effect of topographic 
relief on heat flow across the earth's surface. They may be most 
useful in oceanic geo thermal studies where the gradient measurement 
is often superficial, and the temperature condition on the solid surface 
is generally satisfied rather well. The simplicity of the geometric 
model is both a weakness and a strength in such applications. It is 
a weakness because there are no such slopes on the earth's surface. 
It is a strength because the two parameters, slope angle (#) and slope 
height (PT), are so easily visualized and represented graphically that 
models which bracket or approximate real topography can be identified 
quickly.

Certain results of interest in geothermal studies generally follow 
directly from the exact solutions. If a plane slope can be drawn in 
such a way that it is tangent to the real topographic surface at the 
station and not below it elsewhere, then the exact solution for that 
plane slope gives an upper limit to the topographic anomaly at the 
station. Similarly, a plane slope tangent to the real surface at the 
station, and not above it elsewhere, yields a lower limit to the anomaly. 
The limits imposed by such geometric bracketing can be read directly 
from graphs (figs. 3, 4; pi. 1). The method provides rapid means of 
establishing whether or not more elaborate topographic corrections 
are needed. Thus, it follows from the case j8=90° (tables 1 and 2) 
that any two-dimensional topographic feature whose height is less 
than 10 percent of its distance from the station has little effect on 
the gradient at the surface. (By inequality 111 its effect is negligible 
at all depths.) The exact results can sometimes be applied directly 
to eliminate topographic effects as an explanation of anomalous 
heat-flow results. For example, a heat flow four times the regional 
average, such as some reported from oceanic rises, could be caused 
by a vertical cliff 1 kilometer high only if the station were less than 
7 meters from its foot (table 1). Such a topographic setting could 
hardly go undetected. The same anomaly at the surface could, of 
course, be caused by a 100-meter cliff 70 centimeters from the station 
or a 10-meter cliff 7 centimeters from the station, but it would not 
persist to depths on the order of 1 meter.

From the exact solution for flux through a plane slope it is possible 
to derive expressions for upper and lower limits to the topographic 
anomaly on the flat surface between two plane slopes of any height 
or slope angle. There are three cases: the plane valley, the plane 
ridge, and the plane bench. In the plane valley (inequality 44) the 
station lies on the horizontal surface between two plane slopes rising
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above the station (such slopes are called positive) . In the plane ridge, 
the station lies on the horizontal surface between two negative plane 
slopes (inequality 46) . The plane bench represents a station on the 
horizontal surface between plane slopes of opposite sign (inequality 
49a, b) . For both the valley and the ridge, a lower limit to the topo 
graphic anomaly is obtained by adding the individual anomalies 
caused by each slope, that is, by neglecting the interaction. Both the 
upper and lower limit for the bench contain interaction terms. As 
the slopes become smaller or farther apart, so that the effect of each 
on the other decreases, the bracketing intervals diminish, and the 
sum of the independent anomalies from each slope becomes a good 
approximation in all three cases. The parameters in the inequalities 
44, 46, and 49a, b can be obtained directly from plate 1 or tables 1 
and 2. By geometric bracketing the results can be used to obtain 
limits to the topographic anomaly for stations on horizontal surfaces 
in real valleys, ridges, or benches. Thus, the topographic anomaly in 
the center of an oceanic trench 2 kilometers deep and 2 kilometers 
wide at the bottom and that has irregular walls sloping generally 
between 5° and 9° (Fisher and Hess, 1963) is between 18 and 29 
percent (table 1 and inequality 44).

Although the immediate results of the exact solution for a plane 
slope can be useful, their application is limited by (1) the fact that 
geometric bracketing often yields bracketing intervals too wide to be 
helpful, (2) most of the generalizations apply to stations on geo 
metrically horizontal surfaces, rare in nature, and (3) the solution 
gives no information about the variations of the topographic anomaly 
with depth.

These limitations can be relaxed with the aid of the approximate 
solution of Jeffreys (1938) for the surface heat-flow anomaly Ag'(x0), 
at the station x0 caused by two-dimensional topographic relief, h(x) .

The solution is based on the widely used simplification, in which the 
irregular topographic surface is replaced by a horizontal plane through 
the station. On this reference plane the temperature is assumed to 
vary as Gh(x) , where G represents the regional thermal gradient and 
h(x0) is taken as zero. The advantage of the approximation lies in the 
fact that it is linear in the sense that the effects of individual topo 
graphic elements can be superimposed to obtain the total effect of 
the relief. The result is only an approximation because it fails to 
account for the effects on vertical gradient of lateral heat loss through
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the sloping surfaces. The expression (128) can be made exact with the 
following modification:

&(*)[!+«(*)]1 f4
=-

TT J-< (x XoY
l dx, (129)

where e(x) is an unknown function whose value at each point depends 
upon h(x) at all points. Physically it represents the mean gradient 
anomaly in h(x) at x; its value is generally greater than  1.

At any point x0 on the horizontal portions of a plane slope, there 
is a family of plane slopes of equal height that will yield the same 
linear approximation to the topographic anomaly, Ag'(a;0); the steeper 
ones will terminate farther from the station, the flatter ones closer 
to it. We refer to such slopes as equivalent at x0 . Each member of a 
family of equivalent plane slopes will yield a different value for the 
exact anomaly, Ag(x0)- By equations 128 and 129 the difference will 
correspond to differences in the quantity:

D he
  oo ( £ <EO)

However, e is a strongly decreasing function of distance from the toe. 
Therefore, for positive h, the steeper equivalent slopes should generally 
yield smaller anomalies because, for them, h is smaller and farther 
from the station where e is large, and it is larger and closer to the 
station where e is small. A similar argument applies for negative h. 
It has been demonstrated numerically (fig. 14-16 and tables 4, 5) 
that in any family of equivalent plane slopes the topographic anomaly 
does, indeed, decrease with increasing slope angle except for points 
very close to the brink of steep slopes. There the heat flow is nearly 
zero and small effects of higher order, relating to differences in the e's 
can dominate. Such departures are small and generally unimportant. 

This relation suggests a more refined method of bracketing. To 
generalize the plane slope, and still restrict the discussion to related 
slopelike forms, we define a slope form as two horizontal half planes 
joined by a general (two-dimensional) surface whose highest point is 
the intersection with the upper half-plane (the brink), and whose 
lowest point is the intersection with the lower half-plane (the toe). 
At any point, x0 , on the horizontal portion of a slope form (excluding 
the toe and brink) there is a family of equivalent plane slopes. In this 
family there are some members, h*(x), so steep that they cross the 
given slope at only one point, falling below it near the toe and above 
it near the brink. There are other members, &(x), so flat that they 
cross it only once and lie above it near the toe and below it near the
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brink. It is shown (inequality 71) that we can generally expect the 
exact topographic anomaly from a slope form to be greater than that 
caused by the steeper equivalent plane slopes (h*(x)) and less than 
that caused by the flatter equivalent plane slopes (¥i(x)). The result 
can be visualized intuitively by noting that the difference between 
each bracketing plane slope and the given slope is one positive and 
one negative topographic region. If the gradients in each were uni 
form, their effects on reference-plane temperature would cancel at x0 
because of equivalence. However, because the gradient is generally 
greater near the toe, the difference takes the sign of the region there; 
positive for ^ and negative for h*. The justification of the bracketing 
inequality 71 involves neglecting certain higher order effects asso 
ciated with differences in the e's. The effects are probably unimportant 
in geothermal applications, but the matter may deserve further study.

Bracketing the effects of a general slope form with equivalent plane 
slopes can be accomplished quickly in two or three steps by deter 
mining Ag'(a;0) from plate 2 and then using plate 1 or figures 15 or 
16. A very good approximation to the effects of a general slope form 
can usually be obtained by selecting an equivalent plane slope to 
approximate rather than to bracket.

A positive slope form for which it is possible to draw a flatter 
equivalent plane slope, /£, through the toe is called "concave at the 
toe"; a negative one for which fi can be drawn through the brink is 
called "convex at the brink." Such slopes can be replaced by their 
equivalent cliffs with very small (negative) error as long as their 
height does not exceed their distance from the station.

Consideration of equivalent slopes yields some conditions for 
validity of the Jeffreys approximation at the surface. For example, 
the Jeffreys method can be used with negligible error for positive 
slope forms, concave at the toe, whose height does not exceed 20 
times the distance from the station and whose maximum slope angle 
is less than 30°. This rule includes cases with positive anomalies 
ranging up to 65 percent. The approximation applies also to negative 
slope forms inclined less than 45° if they are convex at the brink 
and their height is less than three times their distance from the 
station. Virtually any slope of one sign can be represented by the 
Jeffreys method as long as it does not produce an anomaly exceeding 
10 or 15 percent.

Although the slope form is rather general, its application to real 
topography is limited by the fact that the sloping parts are of finite 
width and the station must lie on a horizontal surface, though it 
may be arbitrarily close to the sloping portions. Virtually all heat- 
flow stations lie on surfaces that depart from a horizontal plane, 
but the curvature and slope can often be considered to be very small,
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especially for stations on the ocean floor. If the real surface, h(x), 
is gently sloping and smooth over an interval of width I, centered at 
the station, then the error arising from neglecting its slope and 
curvature is equation 90:

The result is obtained by flattening the region I by replacing the 
real slope by a horizontal surface through the station (zo), and ad 
justing the remainder of the relief upward or downward to eliminate 
discontinuities at x=xo±l/2. The result accounts for the reaction 
of the local relief to the distant relief which can be substantial, but 
it neglects the higher order effect of the reaction of the distant relief 
to the subdued local relief. It is seen that the anomaly caused by 
gentle local relief is independent of the absolute heat flow if the 
curvature is negligible, and independent of the lateral heat-flow 
gradient if the slope is negligible. Generally, flattening errors will 
not exceed a few percent if the slope at the station is less than 4° or 
5° and the change in slope angle over the distance I does not exceed 
2° or 3° (see eq 91). After flattening, the station will often lie on the 
horizontal surface between two slope forms (the valley, ridge, or 
bench), one of which can commonly be neglected.

Some knowledge of the variation of the topographic anomaly with 
depth is extremely important in the application of the foregoing 
results. Fortunately it is possible to modify the Jeffreys approxima 
tion for the topographic anomaly as a function of depth, just as 
equation 128 was modified to obtain equation 129, that is, by intro 
ducing e(x) into the integrand to make it an exact expression. Thus, 
equation 106 describes exactly the topographic anomaly due to any 
two-dimensional topographic surface as a function of depth and 
horizontal position. Even though e(x) is unknown, many useful 
results can be obtained.

If the effective topography is all of one sign (for example, if the 
station is at the edge of an abyssal plane or shelf or in the trough 
or ridge of ripple marks), the topographic anomaly at any station, x0 , 
attains its greatest magnitude at the surface z=Q (inequality 111).

The result applies also to the transient case if the direction of 
vertical movement was of the same sign as the relief during topo 
graphic evolution. The result does not apply to the error in the 
Jeffreys approximation, and hence the error does not, in general, 
attain its greatest magnitude at the surface.

Limits to the percentage variation of the topographic anomaly with 
depth can be expressed in terms of horizontal distance to the edge of 
a (two-dimensional) topographic feature, without reference to its
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height. The gradient anomaly at depth X is approximated well by 
the value applicable at the surface if the relief is of one sign and is 
farther from the station than 5X. The mean gradient anomaly in 
the depth interval (0,X) can be approximated by the surface value for 
relief of one sign approaching to within 2X. (The same statements 
apply to relief of both signs in the sense that the error is generally 
a small percentage of the sum of the magnitudes of the individual 
contributions of the positive and negative portions.) Under these 
conditions the gradient anomaly is said to be superficial and the 
exact results for plane slopes can be applied to them. (For example, 
tables 1 and 2 apply to depths of 2 or 3 meters at distances of only 
5 or 10 meters from the toe or brink, even though the height of the 
slope may be measured in kilometers.) Where the height of the relief 
is large relative to its distance from the station, the Jeffreys approxi 
mation cannot be applied to superficial gradients with confidence, 
whereas the present method can. Whether or not the Jeffreys approxi 
mation applies, the present method can yield rapid estimates for 
two-dimensional superficial cases. The effect on the gradient at depth 
X, of relief lying entirely within a horizontal distance 2X, is generally 
an order of magnitude less than its effect at the surface. Unless the 
height is greater than X, the Jeffreys approximation will probably 
apply. Large-scale features extending to within 2X of the station 
cannot be treated directly by the present methods although useful 
limits can sometimes be obtained.

Oceanic geothermal measurements can contain errors greater than 
10 percent from undetected relief unless the probe is at least 2K 
times as long as the uncertainty in local elevations and the curvature 
of the temperature profile is negligible. If the probe length is equal 
to the uncertainty in local relief, an individual measurement can 
contain errors on the order of 20 percent plus a substantial fraction 
of the change in gradient over the length of the probe. Changes in 
local elevations determined over an irregular sea bottom by modern 
sounding techniques can be uncertain by 10's or even 100's of meters. 
This undetected relief can cause gradient errors of 50-100 percent in 
measurements to depths of a few meters. Such measurements will 
often, but not always, be flagged as suspect by marked variation in 
the heat flow with depth. The occurrence of sea-bottom relief on a 
scale important for geothermal measurements is largely unknown. 
At present the best assurance against undetected topographic anom 
alies is the agreement of closely spaced observations.

The major problem in estimating the topographic disturbance to 
superficial gradients is to account for the close-in features. Inasmuch 
as they have short tune constants, the steady-state theory is probably 
applicable in most cases (table 6). The small effects of topographic
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evolution of distant features can be treated adequately with existing 
methods (Birch, 1950).
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